Spotted: Much of the focus on the use of nature to capture carbon has remained above ground – on forests and trees. But ecologist and climate scientist Dr Colin Averill argues that the role of an “entire galaxy” below our feet has been ignored. Soils are made up of millions of species of bacteria and fungi and this microbial biodiversity is essential to healthy plant growth – and efficient carbon capture.
Dr Averill’s team in the Crowther Lab at ETH Zürich has spent years documenting fungi’s impact on tree growth, finding that restoration of underground fungal communities can significantly accelerate plant growth and carbon capture. To develop this concept further, Dr Averill founded Funga, a startup that plans to restore fungal biodiversity to accelerate carbon sequestration in forests.
Funga will use DNA sequencing and artificial intelligence (AI) to generate profiles for a healthy fungal microbiome in around 1,000 different forests. This will help it identify the right combination of wild fungi in each location to achieve accelerated tree growth and the highest amount of carbon sequestration. Funga will also establish around 1,000 hectares (about 2,500 acres) of forest and soil fungal communities – creating an ‘ideal’ environment for carbon removal.
Funga has recently closed a $4 million (around €3.8 million) seed funding round and is working with forest landowners and the foresters to make fungal microbiome restoration a reality.
A growing number of researchers and innovators are focusing on the role of microbes, and especially fungi, in cutting carbon emissions and moderating climate change. Springwise has spotted the use of fungi as a meat replacement, and the application of biome science to create heat-resistant coral.
Written By: Lisa Magloff