Highlighting Useful Technologies for Getting to Zero: The New Zero Energy Project Product Directory
CategoriesSustainable News Zero Energy Homes

Highlighting Useful Technologies for Getting to Zero: The New Zero Energy Project Product Directory

New technologies are making zero energy homes and buildings more affordable, healthier, and more comfortable than ever. The Zero Energy Project now helps you keep up with advanced building equipment and materials through our new Zero Energy Product Directory. Our focus is on energy-efficient, environmentally-friendly products that support and hasten the transition to zero energy homes and buildings.

 

Improved Efficiency

At ZEP, we are fond of saying that you can buy all the products you need to build a zero energy building “off the shelf”. While that’s certainly true, even mature technologies are improving their energy efficiency every year. For example, the success of heat pumps in heating and cooling homes is well established, and using heat pumps for water heating is gaining acceptance. Now heat pumps are being used for energy-efficient clothes drying as well. And mini-split heat pumps are now capable of heating a home even when outside temperatures drop below -13°F . As product offerings change and new products are introduced, one of the goals of the directory is to help you find the latest equipment and materials for your building project.

 

More Choices

While the key to affordability in zero energy buildings is, and always will be, good design, new technology offers designers many more choices. Technological advances are increasing efficiency and changing the balance between efficiency due to structural measures and efficiency as a result of high-performance equipment. For example, the rapidly falling price of solar electric panels is changing the relative cost-effectiveness of on-site generation versus that of structural improvements. Furthermore, solar roofing combines two functions that can be installed at the same time at lower cost than roofing and solar panels separately.

 

Lower Cost

It’s also true that it is sometimes cheaper to purchase an advanced product than to spend time and money on a labor-intensive, conventional approach. For instance, Aerobarrier is an aerosol sealant for buildings that can reliably reduce air leakage to a specified level in only a few hours. Air leakage is a complex problem with at least a dozen unique solutions. But this one technology promises to revolutionize the task of air sealing, especially for production builders.

 

New Capabilities

Finally, some new products offer capabilities that simply haven’t existed in the past. On-site battery storage is already a key component of major grid-integrated zero energy housing developments. This could become standard equipment in future zero energy homes and buildings. It’s a nascent technology that can benefit builders and buyers, while helping utilities even out the loads on the grid.

 

Greenhouse Gases

Reducing the energy needed to operate buildings has been the focus for years. Now that we are closer to realizing the goal of buildings that operate entirely on clean energy, it’s time to integrate the greenhouse gas impact of creating the products themselves. Sometimes called embodied energy, this is the greenhouse gas emissions resulting from extraction of raw materials, transportation, processing, manufacturing, installation, and disposal or recycling.

Products selected for the Zero Energy Project Product Directory exhibit low global warming potential compared to conventional materials or products. When available, the manufacturer has completed and made public a full life cycle assessment to show the range of benefits and impacts of its production, use, and disposal.

 

Indoor Air Quality and Environmental Safety

Since zero energy homes are so air-tight, it is important that the products used in them do not off-gas toxins, such as volatile organic compounds or formaldehyde, or contain chemicals contained in the Living Building Challenge Red List. These chemicals are a risk for homeowners, builders, fire safety personnel and for the environment.

 

New or Existing Buildings

New zero energy construction offers the easiest opportunity for installing these products.  On the other hand energy efficient equipment has an especially important role to play in renovating existing homes toward zero. In these homes where the structure is already established and access is limited, upgrading the energy efficiency of the shell is more difficult and expensive. So it becomes necessary to take advantage of the opportunity to replace failing equipment with new, high-efficiency products, either over time or as part of a major energy upgrade on the path to zero. The energy savings that result may be sufficient to avoid having to make major structural changes.

 

Suggest Products for the Directory

While the Zero Energy Project Product Directory is not intended to be an exhaustive list of everything needed for high energy performance, our hope is that the Directory will stimulate the supply chain of cost saving, energy efficient products in a way that will help drive the zero energy movement forward. Our goal is to help you identify useful products, both new and tried-and-true, that will make it easier to build a zero energy home. We invite your suggestions for products to add to the directory as well as your feedback on listed products, which you can provide in the comment section at the bottom of each page.

Please Note: While the Zero Energy Project is funded in part by sponsorships, sponsors will have no effect on our editorial content or mission, which is to help us all advance towards a zero net energy, zero net carbon, society. Contact us for more information about sponsorship.

Reference

Builder Training & Consumer Demand Are Key To Getting to Zero
CategoriesSustainable News Zero Energy Homes

Builder Training & Consumer Demand Are Key To Getting to Zero

For the world to meet its climate goals, we all need to play a part in transforming the built environment to zero energy and zero carbon. That’s why we at EEBA (Energy & Environmental  Building Alliance ) are setting our sights on making Zero Energy and Zero Carbon homes attainable and available for everyone through zero energy home builder training and consumer engagement. 

Zero Energy Home Builder Training on the Path to Zero

To do this, we have substantially increased educational content, training and professional designations to support builders who are on the path to zero energy and zero carbon home construction.  Check out the Intro to EEBA and more at the  EEBA Academy which features more than 250 hours of on-demand education including the Net Zero Building Professional designation.  To learn more, sign up to receive alerts about our weekly Webinar Series, and our EEBA High Performance Home Summit

Building Demand for Zero Energy Homes

We also continue to cast our net broadly through our expanded partnerships with  Team Zero. Together we are building demand for zero energy homes by arming consumers with the information, programs, and local professional resources needed for them to plan their own path to zero.     

List Your Zero Energy Homes on the North American Inventory of Zero Energy Homes

If you are on the EEBA or Team Zero mailing list, you will be receiving this free Zero Energy Project Newsletter 10 times per year. All EEBA builders and designers who have designed or built a zero energy home are invited to list their zero homes in Team Zero’s Inventory of Zero Energy Homes, and be sure your business is listed in the Zero Energy Project’s Directory of Zero Energy Building Professionals.

 

About the Author:

Aaron Smith | EEBAAaron Smith is the CEO of the Energy and Environmental Building Alliance (EEBA) which represents a community of over 50,000 builders and their stakeholders across North America that are truly the early adopters and innovators in driving sustainable transformation of the homebuilding industry.

Aaron has over 25 years of experience in home construction, building products, sustainability and non-profit board leadership. Aaron can be reached at aaron@eeba.org

 

Reference

EEBA Launches Free Online Database of Sustainable Building Products for Your Home
CategoriesSustainable News Zero Energy Homes

EEBA Launches Free Online Database of Sustainable Building Products for Your Home

The Energy & Environmental Building Alliance (EEBA) and ecomedes have compiled a trove of eco-friendly building products for your home: the EEBA & ecomedes sustainable building products database. This free online tool is designed to help you find the green materials you need in a snap. Users can select products by sustainability attributes, labels, and certifications; casting a wide net or narrowing it to just a few choices that meet specific needs.

This comprehensive tool continues EEBA’s commitment to residential sustainability. Making the resource free will likely expand the market penetration of environmentally preferable building products. Supplying per-product data and automating product performance calculations will serve building professionals that specify products and help customers achieve their sustainability goals.

eeba.ecomendes.com lets you search and compare home building products by category, brand, certifications, ecolabels, and performance criteria. Users choose a product and then can calculate the materials’ environmental impacts and evaluate how they help meet different green rating system standards, including the USGBC’s LEED programs, the International Living Future Institute’s Living Building Challenge, the Department of Energy’s Zero Energy Ready Homes program, and more. Important ecolabels, listed in the tool include Declare, GreenCircle, Life Cycle Assessment, WaterSense Certified, and Environmental Product Disclosures (EPDs). 

 

The green-home players

For over 35 years, EEBA has advanced building science information and education in the construction industry. EEBA members and supporters build resource-efficient, healthy, and resilient homes, working together as a community of thought leaders and early adopters from all facets of the home building industry. EEBA resources, educational programs, and events engage the next generation of sustainable construction professionals, and reach thousands of key decision makers and other important industry players in the space.

Partnering with ecomedes was a key step, according to EEBA CEO and President Aaron Smith. ecomedes, Inc. connects buyers and sellers through cloud-based software, specifically serving the eco construction market. Clients include AEC firms and building owners, brands and distributors, plus some of the ecolabels and rating systems included in the EEBA database. This lends expertise in vetting critical sustainability factors including energy, water, human health, circularity, and social factors.

Whether you’re a residential design and construction pro or a homeowner seeking guidance, this free sustainable products database could save you time and money. We’re eager to see how it might propel the market share of verified sustainable building products, improving our quality of life and protecting the planet and its resources for future generations.

 

Reference

Home Energy Scores: If Ireland Has Them, Why Not the US?
CategoriesSustainable News Zero Energy Homes

Home Energy Scores: If Ireland Has Them, Why Not the US?

Wherever I travel, I enjoy a little window shopping for homes at real estate agencies. I like to compare prices and features in different places. On a recent trip to Ireland, I was surprised to see that every home listing included a home energy score: a BER or Building Energy Rating! The BER shows the home’s energy efficiency on a clear color-coded scale of A to G.

Building Energy Ratings in Ireland

Ireland has required these ratings since 2006. They cost about €150 to €300, and real estate agents must display them on listings of homes or apartments for sale, whether new construction or existing homes. 

The beauty of these ratings is that they show whether buyers are considering a home that is an energy hog and carbon polluter or a highly energy-efficient one. It gives homebuyers vital information regarding the home’s energy costs, so they can make a wise purchase. These ratings can motivate sellers to upgrade the energy efficiency of their homes themselves. While these ratings are not always consistent depending on the energy assessor or region, Ireland is working to remedy these discrepancies.

Home Energy Scores and upgrades in the US

So, where are we in the US regarding energy efficiency ratings? The US Department of Energy created a system of Home Energy Scores that cities and states can use to set up their own energy rating systems. In 2018, Portland, OR, was the first city to require these scores, mandating that every home for sale has a Home Energy Score report. This report estimates the energy use of the home, the energy costs, and the cost-effective energy upgrades proposed to improve the home’s energy efficiency and carbon footprint. 

So, how is it going in Portland? Currently, close to 92% of homes for sale in Portland have Home Energy Scores. Portland has trained its real estate agents and energy assessors to provide consistent results. They also work to make the process as easy as possible for sellers. Home energy assessors are available to homeowners in need of rating services. In Oregon, the cost of an energy rating by a licensed home energy assessor ranges from $150 to  $300. 

The goal is to support sellers in making energy upgrades before they sell: to offer a more appealing property, and for buyers to save money on their home heating and cooling costs while reducing carbon emissions. But few cities, or states, have followed Portland’s example. To date, Oregon is a leader with Portland, Milwaukee, and Hillsboro requiring Home Energy Scores. The city of Bend is actively considering passing one by December 2022. Other cities requiring Home Energy Scores include Austin, TX; Berkeley, CA; and Minneapolis, MN. Overall, adoption of Home Energy Scores by cities and states is way too slow to impact climate change.

 

Thermal Image of Heat Leak thru Windows

Take Action Now!

Yes, it would be helpful to have local, state, and national governments require energy ratings and proposed upgrades as part of full disclosure on the sale of a home. But it’s happening too slowly. Instead, you can work with your local government to develop a home energy score requirement.

For your own home, you can search for a home energy rater or energy assessor to help you obtain a home energy rating and suggest the most cost-effective ways to upgrade your home’s energy efficiency. Then, you can enjoy the benefits of a more energy-efficient, more comfortable home and sell it for a higher price. 

I advise homebuyers to insist on an energy rating in the closing agreement as part of the home inspection, and ask the seller to make the needed energy upgrades. If the seller does not agree, buyers can engage an experienced contractor to undertake a complete energy evaluation and immediately implement upgrades, before move-in. That way buyers can enjoy a healthier, more comfortable, energy-efficient home from day one. Lower utility costs and reduced emissions to help prevent global warming will continue for years. 

 

Reference

Is Going All-Electric a Fantasy?
CategoriesSustainable News Zero Energy Homes

Is Going All-Electric a Fantasy?

While I was out walking the other day, my neighbor, a recently retired architect concerned about global warming, buttonholed me to ask:   “If we go all-electric, how can the grid handle all the additional electricity demand?  Have you seen anything in writing that addresses that?”  By all-electric, he was referring to homes, buildings, transportation, and manufacturing all running on electricity – instead of using fossil fuels. I gave him my elevator pitch answer in 3 minutes. But he wanted to see something written describing how the transition to all-electric could happen.  His question made me think more about the unexpected and perhaps poorly anticipated challenges posed by going all-electric.

What Reasonable Skeptics Are Questioning

The fastest and most economical way to reduce greenhouse gas emissions to zero is to electrify everything that currently uses fossil fuel – all homes, buildings, factories, and transportation – and power them with 100% renewable energy. When we go all-electric , and renewables grow to power the grid entirely, we could stop using fossil fuels for almost all of our energy needs, which will be crucial to reaching the zero carbon emissions goal by 2050. First, however, we need to answer three critical questions for “all-electric” to go beyond being a slogan and become a reality. Can we increase the electricity supply sufficiently and quickly enough to supply the electricity needed to power all our transportation, buildings, and manufacturing by 2050? Will the grid be able to handle the increase in electric throughput? And can we shift electric production to 100% renewables by 2050?

The limitations of the current electric grid, which has over 7,300 power plants and millions of miles of both low and high voltage power lines, are well known. First, there is no national integrated smart grid — the grid is powered and managed by a patchwork of local and regional power companies. Parts of the grid are more than a century old; the American Society of Civil Engineers gave the grid a C- rating; and some areas are at risk of blackouts due to extreme cold or heat or drought-induced reductions in hydro supply. Second, there is no one-size-fits-all solution to growing the grid’s energy supply, handling capacity, and switching to renewables while maintaining reliable power supplies. Third, powering electric vehicles (EVs) could be problematic as their numbers grow. Finally, electrifying everything will require that the grid in the US provide 90% more power by 2050 than it did in 2018. To address these questions and concerns, let’s look at each element of this challenge — starting with examining whether or not the grid can handle the shift to all electric vehicles. 

Can the Current Grid Handle Electric Vehicles?

So far, the current level of EV use has had a negligible effect on the grid. The expected growth in electric vehicles will likely increase electric demand gradually — rather than in sudden large jumps. So as EVs grow in popularity, they will not create an overload or disrupt our current grid setup. With planning, incremental growth in the capacity of our existing grid should handle the future increase in demand from powering up EVs. Even as 80% of all passenger cars become electric, there would only be an increase of 10-15% in electricity consumption spread over decades — the type of growth that local utilities should be able to plan for and manage. When all US vehicles become EVs, they will need about 28% more than the 2020 US electric production. With proper planning and investment by local utilities, the expected incremental growth in demand as we move to 100% EVs can be met by gradual increases in grid capacity. 

And some variables can work in favor of evening grid loads as demand for EVs increases. For example, most people charge their EVs once or twice a week and at different times, spreading out the demand on the grid. By using timers and time-of-use charging, people can charge their EVs when demand is low, which could benefit the grid by evening out demand loads.  Further, future EVs will be capable of two-way power exchanges – giving back to the grid when demand is high and taking from the grid when demand is low.  So it could be a win-win. And when large fleets of electric trucks and buses provide power to the grid when most needed, it will help reduce peak load imbalances even further. So the benefit to the grid could be substantial.

Can the Grid Handle All-Electric Homes and Businesses?

While powering electric vehicles with our patchwork of local grids may be possible, what about all the load placed on the grid when we electrify our homes and businesses? A key factor here is that summer electric demand is usually greater than winter demand due to the widespread use of highly inefficient electric air conditioners. That means that there is spare production capacity in winter. So adding efficient heat pump heating systems and heat pump water heaters will increase demand in winter when there is already excess capacity. And in the summer, replacing inefficient air conditioners with efficient heat pump HVACs will help reduce demand because of their increased efficiency.

Each local utility will face different challenges when we electrify all buildings. Still, the transition will be gradual enough for them to increase their supply in tandem with demand increases. For example, New York City found that it can electrify almost half of its buildings before it needs additional electric production. Smart electrification of the whole city will add 38% above the current summer demand by 2040. This incremental increase is one that utilities can plan for and accommodate. And a study in California found that there is sufficient excess capacity in the winter to allow for a smooth transition to all-electric buildings.

Net Zero New Construction and Retrofits

To reduce demand on the grid while electrifying homes and businesses, we need to retrofit them for energy conservation. Insulating them, making them airtight, and installing energy-efficient heat pump water heaters, dryers, HVAC, and induction stoves will save even more power, reducing the load on the grid as we go all-electric.  On top of that, adding on solar collectors or utilizing community solar will lower grid demand further.  And when we connect zero energy homes and buildings to the grid with smart meters, the opportunities for conservation and balancing demand on the grid will conserve more electricity.  We can significantly reduce the increased load from going all-electric by building grid-smart, energy-efficient, net zero energy homes and buildings powered by rooftop solar. Grid integrated EVs, powered by rooftop solar, could further reduce the increase in peak demand.

What About Electrifying the Manufacturing Sector?

An effective integrated national grid will be necessary to shift renewable energy from areas with plentiful solar and wind resources to areas with heat and carbon emission intensive heavy industries, such as steel, cement, and chemicals. The American Infrastructure Act will go a long way to address this challenge. In the meantime, for those processes that can we can electrify, these industries can add solar panels, wind turbines, and storage batteries to supplement energy coming from the grid. The Tesla Gigafactory is an excellent example of what industries can do.  

For those industrial sectors that cannot fully electrify, we can produce green hydrogen in areas of the country with plentiful wind and solar power and transport it to these industries just as we transport diesel fuel now.  For some heavy industries and aviation, going all electric will require more technical innovations, which are in the pipeline. In the meantime, it will be wise for us to electrify as many industrial processes as we can – and power them with renewables.

Can the Grid go All Renewable by 2050?

According to the US Energy Administration, in 2021,  utilities generated about 4.2 trillion kilowatt-hours (kWh) of electricity in the United States.  About 61% of this was from fossil fuels, 19% was from nuclear energy, and  20% was from renewable energy sources, including wind, solar and hydroelectric. In addition, small-scale solar systems generated about 49 billion kWh more.

The good news is that in 2021 approximately 70% of all new utility electricity production capacity came from renewables. In 2015, the US produced 5.7% of its electricity from wind and solar (229.8 TWh), and in 2021 that increased to  13% – 543.5 TWh or 543,500,000,000 kWh – more than doubling in 7 years.  If that growth rate continues, by 2028, renewable energy production could be over 1 trillion kWh; in 2035, it could be around 2 trillion kWh; and in 2042, it could be over 4 trillion kWh. Even if the growth rate declines, it may well grow to be over the 2.5 Trillion kWh currently produced by fossil fuels.  That is the amount we will need to phase out and replace with renewables. Meantime, stand-alone rooftop solar is growing at 6% per year. At that rate, it could double to 100 billion kWh by 2034, to 200 billion by 2046, and 400 billion by 2058, which would be a valuable contribution to renewable power production.

Battery storage is a key factor in a successful all-renewable electric supply system. The National Renewable Energy Laboratory modeled several energy storage scenarios resulting from variable supply and demand curves and found enough batteries could be deployed economically by 2050 to support renewable generation of 80% or more utilizing existing technologies. This estimate does not consider savings from energy conservation, new battery technology breakthroughs, or the integration of EV batteries into the grid.

Hope for the Grid

While some local and regional grids have adequate capacity to support the growth projected to come with electrifying everything, not all states are equally prepared. Some will have to plan for and invest in improving their production and transmission capacities – but the growth will likely be relatively predictable and manageable. Even the most unprepared states should be able to accomplish this. We know because we have done it before! From 1975 to 2005, electric demand in the US grew by 2.6% per year. Electrifying everything by 2050 will also require increasing electricity production to accommodate buildings, transportation, and industry electrification. The required growth rate will be about 2.2% between 2020 and 2050. So we know we can do it.

Electric transmission lines may need to increase by 60% by 2030 to integrate the dispersed renewable sources of supply such as solar and wind with the increased demand created by all-electric buildings, transport, and manufacturing. With the passage of the American Infrastructure Act, there is even more hope for the grid. $65 billion will improve grid reliability and resilience, upgrade transmission lines, and improve grid flexibility with demand response and the integration of distributed energy resources. These grid investments will enable smart technologies to increase efficiency even further. With the energy conservation potential from zero energy homes, buildings, and industries and grid-integrated electric vehicles,  increases in electricity demand could be more modest and manageable than projected.

Smart People

Going all-electric from all renewable sources is possible by 2050. All it requires is a change in our thinking and our behavior.  For building professionals — it means learning the skills to design, build, retrofit, and sell all-electric zero energy homes and buildings equipped to be EV ready and integrated with smart meters. For homeowners —  it means gradually upgrading their homes and transportation to all-electric net zero. For home buyers — it means looking for and asking for net zero — or rolling the costs of upgrading their new purchase on the path to zero into their mortgage. For business owners — it means upgrading their facilities, transportation, and processes on the path to zero. For local governments and utilities, it means working together to plan effectively for increased capacity and increased integration of grid producers and consumers. We already have almost all the technology we need to electrify everything and power everything with renewable energy by 2050 – but will we do it?

 

By Joe Emerson

Joe Emerson is the founder of the Zero Energy Project.

 

Reference

Fresh Air Systems – Balanced Whole House Ventilation
CategoriesSustainable News Zero Energy Homes

Fresh Air Systems – Balanced Whole House Ventilation

Jack Hébert, the founder of the Cold Climate Housing Research Center, is credited with a phrase that’s becoming increasingly familiar to high-performance builders: “Build tight, ventilate right.” It means that as houses get tighter and better insulated, the need for well-designed mechanical ventilation gets more compelling.

At its simplest, this means using kitchen and bathroom fans to remove moist or particulate-laden air. In this exhaust-only approach, outside air finds its way into the building via gaps in the building enclosure. Supply-only ventilation works the other way: fans bring fresh air into the house, but there’s no dedicated path for stale indoor air to leave. Both of these approaches are economical but have drawbacks.

A more effective option is a balanced ventilation system in which incoming air is offset by an equal volume of outgoing air, which keeps air pressure in the building close to neutral. Builders and designers who specialize in superinsulated houses with very low air leakage rates are now likely to include either a heat- or energy-recovery ventilator in the plans. These mechanical systems are similar in that they have a core through which both incoming and outgoing air travel to transfer energy and, in the case of ERVs, moisture.

In a heat-recovery ventilator or HRV, there’s an exchange of thermal energy across the core. This is what engineers call “sensible heat.” In winter, exhaust air transfers some of its thermal energy to incoming fresh air, reducing much of the energy loss that would otherwise take place. In an energy-recovery ventilator or ERV, there is an exchange of sensible heat but also an exchange of moisture, or “latent heat.” (These systems also are called enthalpy-recovery ventilators.) ERVs are designed to keep indoor humidity levels more comfortable in both winter and summer.

A newer generation of ventilator substitutes a conventional ERV core with a heat pump. The units provide heating and cooling as well as ventilation, so they are fundamentally different from devices aimed mostly at providing fresh air with a minimum of energy losses. Two such products are the Build Equinox CERV and the Minotair Pentacare.

“Ventilation is good, but it represents a really, really large energy stream to continuously heat, cool, humidify or dehumidify that stream of air that just comes in from outside,” says Brian Ault, a senior design engineer with Positive Energy, a mechanical systems consulting firm. “HRVs and ERVs help reduce the amount of energy that takes plus, they can filter it, so you can catch most of the big stuff before it comes into the house.”

There are more than a dozen manufacturers that offer ERVs or HRVs (or both) to buyers in the U.S., including familiar ventilation brands such as Broan, Fantech, Panasonic, and RenewAire, along with companies that may be a little less familiar to U.S. homeowners, such as Zehnder, a Swiss company that makes the high-end ComfoAir systems. (The Home Ventilating Institute, an industry trade group, maintains a list of manufacturers on its website, which is available here.)

Air distribution systems for HRVs and ERVs vary widely. At one end of the scale are systems that include dedicated supply and exhaust ducts to key rooms in the house. That ensures a constant and well-distributed source of clean outdoor air but at a relatively high cost. Other systems are less complex and may even use existing HVAC ducting to distribute outdoor air. Through-the-wall appliances provide fresh air for a single room.

Costs for installing a system in a typical 2000-sq.-ft. house range from about $3000 or less to nearly $10,000 for a high-end system with more complex ducting. (The units themselves are much less expensive, ranging from less than $1000 to nearly $4000 for a top-end model.)

The Basics of System Operation

The heart of an ERV or HRV is a metal box with four ports. Inside, the core of a heat exchanger looks something like corrugated cardboard and allows incoming and outgoing air to cross paths without actually mixing. HRV cores, Ault said in a telephone call, are fairly simple, consisting of aluminum or another light metal with good heat-transfer properties.

“They’re not awesomely efficient,” he said, “but they have effectiveness ratings somewhere between 50%-60% up to 95% depending on the size, the brand, and how much air flow goes through them.”

ERVs get more complicated. Instead of a basic aluminum heat exchanger, an ERV typically has a core made out of a polymer embedded with a desiccant, a material that absorbs moisture. The core material permits the passage of some moisture, although it’s still air-impregnable, so the airstreams don’t mix. According to Ault, this type of cross-flow core is common in a residential unit, where airflow rates are lower than 250-300 cubic feet per minute (CFM). Above that, in commercial buildings, office buildings, and schools, it becomes more practical to use a rotating wheel with a desiccant.

In the summer, outgoing air that has been cooled pulls some of the heat and humidity from the incoming airstream. Illustrations courtesy RenewAire.

In winter, an ERV helps indoor air retain moisture. The heat exchanger also warms incoming fresh air.

A three-bedroom, 2000-sq.-ft. house would typically need a system rated at 90-100 CFM To meet ASHRAE ventilation requirements, Ault said. Sensible heat recovery in an HRV averages about 70%. In an ERV, a certain amount of sensible heat recovery is taking place. The latent recovery is usually between 40% and 60%, so about half the moisture difference in the two airstreams will be transferred through the core.

“It is an appreciable amount of latent energy when you have a legitimate difference between your indoor and outdoor moisture levels,” Ault said. “Up north, it’s dry as a bone outside for four or five months out of the year in the winter. In the summer, sometimes it’s about the same as inside the house. Farther south, that’s flipped.”

In humid parts of the country—the southeast U.S.—running an ERV during the summer does not lower indoor humidity. An ERV will actually increase indoor relative humidity because the outdoor air doesn’t shed all of its moisture on its way indoors. But the problem would be worse if an HRV were installed because there is zero moisture transfer in an HRV. Even though moisture levels will go up when running the ERV, stale indoor air is being exhausted and fresh outdoor air is being introduced. A dehumidifier or an air conditioner can deal with excess humidity.

According to Ault, ERV cores eventually get plugged with oil, skin cells, hair, and dust and should be replaced every four to 12 years. A less complicated HRV core should go for a couple of decades without any major maintenance. When it gets dusty, a homeowner can just clean it off with compressed air.

The key, however, may be in changing filters regularly, not in any inherent flaws in core design that limit their life span. In this BS* + Beer Show episode, which aired last fall, Enrico Bonilauri of EMU, a Passive House consulting firm, noted that the only moving parts in an HRV or ERV are the fans, so there’s not much to wear out, and cores can last for decades providing that filters are changed on schedule.

Bonilauri also noted that heat recovery rates for many models might be overstated because the heat generated by fans inside the unit may incorrectly be attributed to heat recovery. In units that are not certified by the Passive House Institute, he said, the stated heat recovery rates should be reduced by 12%.

Choosing between an HRV and an ERV

A great deal of ink has been spilled by researchers and journalists on the question of whether an HRV or ERV is the best choice.

According to Jacki Donner, the Ventilating Institute’s CEO, the decision has been boiled down to where you live. Historically, HRVs were more common in houses in colder climates because the chief concern was the amount of thermal energy that could be saved. Humidity was seen as a secondary problem. The most efficient units on the market capture more than 80% of the heat in the outgoing airstream and transfer it to incoming air—in really cold environments, that’s a big plus. ERVs were typically specified in places with hot, humid summers because they transfer some of the moisture in indoor air to the outgoing air, thereby making indoor relative humidity more tolerable than it would be with an HRV.

But there is nothing simple about this debate. For example, there’s a good case to be made for ERVs in cold, northern climates. Cold air holds less moisture than warm air, so during the winter outdoor air is very dry. When it’s brought into the house without any attempt to salvage the moisture from the outgoing airstream, indoor air can get uncomfortably dry.

This Zehnder HRV includes a number of supply and exhaust ducts. Ducted distribution systems run the gamut from complex, like this one, to simple designs with only a few supply and exhaust ports. Photo courtesy Alex Wilson.

How this plays out depends on the size of the house, the number and behavior of the occupants, and how tight the house is. In small houses with very little air leakage and lots of people, high indoor humidity can be a problem in the winter. An HRV can make it more comfortable. But a large, leaky house in a cold climate may already be very dry during the winter, so an ERV will help prevent it from becoming too dry. In other words, there is no simple formula that fits every house and every climate. (For a detailed discussion of the variables that go into making this decision, read this article by Martin Holladay. Although it is more than a decade old, the basics have not changed.)

Donner says that while HRVs have historically dominated the market, especially in Canada, that’s changing. “Today and moving forward, ERVs are used more and more throughout the USA,” Donner said in an email. “A similar situation is occurring in Canada.”

ERVs have been more expensive than HRVs in the past, but that gap is narrowing, and designers are recognizing the importance of capturing humidity in the winter, Donner said, giving ERVs a lift even in areas where HRVs once ruled.

Nick Agopian, vice president for sales and marketing at RenewAire, raised two other points. In a telephone call, he said that HRVs are more difficult to install. They have to be oriented in only one way so condensate drains work properly (ERVs can be installed at any orientation). In cold weather, HRVs are more likely to freeze up, he added, requiring a defrost cycle.

RenewAire, which began life as a solar energy company in the 1970s before branching into ventilation, decided in the early 1980s to focus on total energy rather than sensible energy alone. The company doesn’t make an HRV. “Where ERVs used to be 25% [of the market], and HRVs were usually 75%, it’s now shifted,” Agopian said, “because at the end of the day, they cost about the same price and they perform on the whole aspect rather than on the sensible aspect of energy transfer.”

“An HRV is used to save energy,” he said, “but an ERV is also used to downsize the capital costs of [air conditioning or dehumidification] equipment. If we’re going to lower the temperature, we can downsize the equipment. But if the humidity stays the same and you still have to dehumidify, you can’t downsize. All you’re doing is saving a portion of that energy, but your capital equipment still needs to be the same size, and it has to work hard to dehumidify that air.”

Heat transfer in an ERV typically isn’t quite as good as with an HRV, he said. And as the latent energy performance of an ERV is increased by making the desiccant-laden membrane thicker, the thermal performance goes down. But nationally, the tide seems to be turning toward ERVs.

“Deciding between an ERV and an HRV should land on ERV most of the time,” says Allison Bailes III, a Georgia-based consultant. “In a warm, humid climate, an ERV brings in less outdoor humidity than an HRV. (An ERV isn’t a dehumidifier. It does still add to the latent load in the house.) In a hot, dry climate, an HRV will make your already dry air even drier. In a cold climate, bringing in outdoor air without moisture exchange can result in extremely low humidity in winter. Only in mild climates like the West Coast of North America do HRVs make sense – sometimes.”

In an email, Bailes added that occupancy is another factor to consider. “The higher the density of people in a space, the more you might need to dry out the air with an HRV,” he said. “A small, airtight apartment or condo with two or three people in it, for example, may be too humid indoors with an ERV.”

Bailes continued: “Another reason people choose HRVs is that they’re more efficient at transferring heat than are ERVs. What good is it to have high-efficiency ventilation, though, if you end up growing mold? The primary way to choose between an ERV and an HRV is to understand the moisture control needs of the space being ventilated.”

Ductless HRVs and ERVs

Several manufacturers offer through-the-wall HRVs and ERVs designed for smaller spaces. They include the Zehnder ComfoAir 70 ERV, the Panasonic WhisperComfort ERV, the Lunos e2 and eGO, and the TwinFresh Comfo RB-1-50. These ductless ventilators move relatively small volumes of air so they are best suited for small spaces. Zehnder’s model has a maximum capacity of 35 CFM, for example, while the Lunos e2 is rated only up to 22 CFM.

A pair of Lunos through-wall ERVs, working in tandem, are designed for small spaces. They alternate between exhaust and supply modes with a reversing fan. Image courtesy 475 High Performance Building Products

At least two of them have a ceramic core that serves as the heat and moisture exchange and a fan that reverses direction. Exhaust air warms up the core, and when the fan runs in the opposite direction, incoming air recaptures that heat (and in some cases, moisture). The Lunos e2s are installed in pairs and operate on opposing cycles of exhaust and supply, which the manufacturer says results in balanced ventilation.

These devices are much less expensive than the whole-house models that require some ducting. But because they have lower capacities for air flow, it might be necessary to install a number of them in order to reach recommended ventilation rates for the whole house. That can get expensive.

COVID-19 and other health concerns

The growing impact of wildfires in the West and the unrelenting spread of COVID-19 raises other questions about indoor air quality and public health. Filters for incoming air can help reduce the levels of dangerous particulates—especially those measuring 2.5 microns in diameter called PM2.5—along with the other junk that’s often found in outdoor air. MERV-13 filters are typical, but more effective HEPA filters can be substituted when outdoor air conditions are especially challenging. Bringing fresh air into the house dilutes pollutants that remain, but filters should be checked regularly.

When it comes to COVID, transmission rates are lower when indoor relative humidity is in the 40% and 60% range, according to this article posted last fall by researchers at the Harvard T.H. Chan School of Public Health. That suggests ERVs may be more beneficial during the winter in cold-climate areas because they help keep humidity higher than it would be otherwise. Although an HRV has higher thermal efficiency, in some situations, an HRV can make indoor air too dry during the winter.

ASHRAE offers detailed guidance on the operation of ERVs during the pandemic in this document published last year.

Deciphering Flow Rate Requirements

Determining how much fresh air a ventilation system should provide can give even experts a headache. “It’s hard,” admitted Cramer Silkworth of Baukraft Engineering in the aforementioned BS*+ Beer episode. The IRC requires buildings with air leakage rates of less than 5 ACH50 to have whole-house mechanical ventilation, but standards on exactly how much are evolving.

The benchmark is ASHRAE Standard 62.2. In pre-2013 versions, it required supply air of 0.01 CFM of ventilation air per sq. ft. plus 7.5 CFM per occupant; on the exhaust side, it called for 25 CFM of continuous ventilation in kitchens (100 CFM supplied intermittently), and 20 CFM in the bathroom for fans run continuously (50 CFM for intermittent operation). In versions of 62.2 published after 2013, supply air requirements went up sharply, while exhaust air minimums followed a new schedule in the kitchen, depending on whether a range hood was used. Passive House requirements are more demanding.

Building scientists were divided on whether the changes were a good idea. Some experts argued that even the old requirements were too high because they tended to result in high indoor moisture in humid climates.

The bottom line can be no absolutes, even for engineers like Silkworth who work with system specifications all the time. His approach is to use the code-required ventilation rates in whatever jurisdiction he’s working in as a minimum. To that, he likes to add another 25% to 50% in capacity at least in boost mode.

“It depends a lot on what’s going on in that building and what the occupants are doing,” he said in a telephone call. “It’s hard to nail down any one specific formula for maintaining good air quality. More fresh air is better, especially now with all of the COVID concerns, but there’s the energy expense and especially humidity control you have to add to those systems. So, until we have free dehumidification and heating and cooling and filtration on all these systems, it’s a battle between those two factors—you need enough but not too much, and it’s really hard to say what those levels are.”

The system should be commissioned after it has been installed to make sure it’s performing as designed, he said, and filters should be changed on a regular basis.

Another question is whether the systems should run continuously or intermittently. Older systems use one-speed fans and simple controls. With intermittent operation, the system effectively runs at variable speeds without the cost and complexity of variable-speed motors and controls, Silkworth said. Variable-speed motors, however, are becoming more common. They can be sized for peak demand (boost mode) but run at 75% of capacity most of the time. Those systems are quieter and more efficient, but they still have the peak capacity they might need a few hours of the day.

Asked whether ventilation systems that run continuously are best for indoor air quality, Silkworth said: “Yes, but if you have a cycling system that goes on and off every 15 minutes, I don’t think that 15 minutes of off time is going to kill your air quality to any noticeable extent—unless we’re talking about a densely occupied conference room or something like that. If it were hours between cycles, that would be a problem.”

A compromise between lower-cost systems with one-speed motors and more expensive systems with variable-speed motors are two-speed fans that are becoming more common, he said, adding, “If that could be a standard option, that would be great.”

Distribution Takes Many Forms

Fresh air can be distributed around the house in one of many ways. As described in this paper published by the Building Science Corp., the simplest is a “single-point” system with one supply duct and one exhaust duct. Pulling indoor air from the master bedroom pulls fresh air in from other sources. When there is no central air handler available, this type of system is inexpensive, but it doesn’t ensure ventilation air will be distributed evenly around the house. Spot ventilation would be required in bathrooms and kitchens.

This simple system has one supply duct and one exhaust duct, along with spot ventilation in the kitchen and bathroom. Drawing courtesy Building Science Corp

This simple system has one supply duct and one exhaust duct, along with spot ventilation in the kitchen and bathroom. Drawing courtesy Building Science Corp.

In a multi-point system, fresh air is distributed to bedrooms and main living areas while stale air is drawn from common areas, such as a hallway, the kitchen and bathrooms (exhausting a cooking area with an HRV/ERV is not recommended). Building Science Corp. says these fully ducted systems represent best practice and are the most efficient but also the most expensive. They also are effective where there is no central air handler available.

An air handler also can become part of the distribution system. Fresh air is routed through the HRV/ERV and into the supply side of the air handler, as shown in the diagram below. Returns to the air handler go through a filter, and other ducts pull stale air from indoors and direct it to the HRV/ERV. These systems also mean whole-house distribution and come with moderate cost. A variation is to draw the exhaust air for the HRV/ERV directly from the air handler’s return trunk while supplying all fresh air through the air handler’s ducts.

This distribution system uses the air handler in the HVAC system to distribute fresh air from an HRV or ERV. It also includes kitchen and bathroom fans for spot ventilation. Drawing courtesy Building Science Corporation.

Zehnder’s devices, which have become well known to those building and designing high-performance houses, are examples of a multi-point system. They are among the most expensive on the market, with installed prices in a single-family home approaching $10,000. But they are highly rated and have very high thermal transfer rates.

Less sophisticated systems will be much less expensive, but to advocates like Agopian, it’s all about the importance of fresh air and good health. He may be in sales, but the RenewAire executive was part of an ASHRAE working group studying ventilation requirements for multifamily dwellings and is well versed in the technical side of the business.

One of his biggest frustrations is the relative lack of attention to indoor air quality in U.S. buildings and the reluctance of homeowners and builders to invest a few thousand dollars in a mechanical system that can dramatically improve health. He calls ventilation “preventive medicine” that can be more effective than medication people have to take after they’ve developed health problems because of exposure to air pollutants in their own homes.

Buyers choose a model of HRV/ERV because of cost differences, he said. Cost-conscious buyers object to requirements for higher ventilation rates that mean only marginal increases in energy costs.

“Really?” he said, “so you’re going to put a $10,000 granite countertop or a $20,000 Wolf range in your house because you want it to look good, but you’re worried about putting in even a $4000 ERV when I can show you that it will improve your life?”

By Scott Gibson 

Scott Gibson is a contributing writer at Green Building Advisor and Fine Homebuilding magazine. This article originally appeared in Green Building Advisor.

Reference

Sealed – Energy Efficient Homes Without Cost or Hassle
CategoriesSustainable News Zero Energy Homes

Sealed – Energy Efficient Homes Without Cost or Hassle

Are you someone who wants to make your home more energy efficient but gets stressed about the thought of the time and money involved? Sealed offers home energy renovation packages that take care of the logistics and financing, so you don’t have to. They focus on helping homeowners achieve a stress-free energy upgrade that significantly cuts energy waste in the home. Based in New York, Sealed has extended its services to New Jersey, Connecticut, the Philadelphia Metro Area, and the Chicagoland Area of Illinois – with more to come. They prioritize ease, affordability, and comfort for homeowners through powerful energy upgrades, including heat pumps, whole-home weatherization with insulation, air sealing, and smart home tech, without sacrificing quality – while putting homeowners first. 

The Sources of Renovation Stress 

Have you ever spent all afternoon searching for a decent contractor? Or maybe you have made what feels like a million calls that end up with you waiting on hold or even leading to a dead end. Perhaps you have passed those stages but still find yourself confused and unsure. Unsure about how you might pay or what they’re even talking about. When looking for a decent contractor to help improve energy efficiency within your home, many stressors seem to come along with what should be a harmless task. Sealed helps ensure you don’t have to deal with that nightmare process and can get directly to the dream results. 

Sealed Takes Care of it All 

“We will take care of it all.” Sealed believes in helping people achieve healthy, comfortable, and energy-efficient homes, and they are committed to making it an easy process. Sealed actively takes away the stress of everything from finding contractors up to figuring out a payment method. Sealed provides certified home performance contractors, project plans, and coordination of all of the work. “We manage the installation process from scheduling to completion.” Their method is efficient and affordable. After a day or two in your home, Sealed takes care of everything, including the upfront costs. The energy that you save will help pay for the project. “If you don’t save energy? We don’t get paid”

The Sealed Process Step by Step

At Sealed, we’ve designed a better process for upgrading homes. We prioritize ease, affordability, and accountability, without ever sacrificing quality”. The first step is to take the Sealed qualification quiz. It only takes a few minutes, and you will receive an immediate response as to whether or not you are a good fit for Sealed. The next step is to have an introductory call. On this call, there will be a conversation about the issues your home is experiencing and how they can best address them. This call is free, and there is no obligation to take the conversation further. After the introductory call, Sealed will conduct an energy profile analysis. This analysis entails a quick scan of the home’s energy strengths and weaknesses and past energy usage to understand better what upgrades your home needs. Once Sealed understands your house better, they will devise a project plan and timeline. Your home upgrade plan will include the project value and customized payment program. With Sealed’s payment plan, they can cover up to 100% of the project costs upfront. They’ll work with you to design your repayment terms to balance the low upfront costs with monthly charges that work for your budget. If you’re ready to move forward, you’ll sign your agreement. Next, your Sealed contractor will visit your home to verify that everything is properly scoped out. If any changes are needed, they will adjust the plan accordingly. Then, the installation process will begin. Based on the project plan and timeline, installation takes about one or two days. 

Energy Efficiency with Accountability 

Once the installation is complete, you will start receiving monthly bills. Sealed bases the repayment amount on actual energy savings from the renovations completed. If the home energy improvements don’t reduce your energy use, Sealed won’t get paid. So Sealed partners with the best home contractors and only suggests upgrades that will save you energy and money.

The Help We All Need 

How does the existing housing stock reach zero emissions by 2050? It’s a big job, but Sealed is one of many startups that offers the opportunity for everyone with an existing home to get on the path to zero carbon. Given the federal government’s lack of action, the innovation of private companies, such as Sealed, powered by investor capital, is a great way to reach that goal. By offering the technical resources and financing that homeowners need, companies like Sealed may make it possible for almost all homeowners to get on the path to zero. 

 

–  By Anna Jennissen, Editorial and Events Intern with EEBA. Anna is pursuing a BA at the  University of Minnesota, Twin Cities, majoring in Strategic Communications and Sustainability.

Special thanks to Sealed for editing and reviewing this article.

Reference

A Summer Home Rebuilt on the Path to Zero
CategoriesSustainable News Zero Energy Homes

A Summer Home Rebuilt on the Path to Zero

The blue cottage in a historic Chautauqua community in Lakeside, Ohio, had hosted families for nearly a century and had been the beloved summer getaway of Frank and Brenda Baker’s family for the past 15 years. So when a tree fell on their summer home in June 2009, it crushed more than just the structure. At first, the Bakers hoped to save some of the original building, but a thorough inspection determined that even the areas that didn’t take a direct hit were too compromised to be reused. That news prompted the Bakers’ plan B: to rebuild the cottage from the ground up as a model of energy efficiency and sustainable building while maintaining the character of its 100-year-old  predecessor. To that end, they hired both a designer and a builder experienced in both sustainability and historic preservation.

Frank and Brenda have christened their project “The Lakeside Green Cottage” and have engaged like-minded professionals to bring it to life. Their designer, Dennis Feltner is an advocate for eco-friendly design and plans to adapt the sustainable building principles used in this home into his future work.  Additionally, the construction contractor, Tom Dearth, is a Certified Green Builder through the National Association of Homebuilders. Partnering with the  Lakeside Association’s sustainability initiative, the Lakeside Environmental Stewardship Society, the Bakers host tours of the cottage to help educate the public about the value of green renovations. “We want to show people that eco-friendly building technology and historic character can go hand-in-hand,” Frank Baker said. 

“We really think this will be an asset to the community, and perfectly aligned with the Lakeside spirit and mission, he adds. 

Sustainable Building  Measures

The Baker cottage incorporates timber frame construction, with visible posts and beams used on the first floor.  Timber trusses support the roof and create vaulted ceilings in the second-story bedrooms. They used structural insulating products for the shell of the house, incorporating structural insulating panels (SIPs), insulating concrete forms (ICFs), and flexible EPS insulation sheets. The result is a super-tight building envelope that keeps conditioned air in, vastly reducing energy use – and energy bills.

In keeping with the Baker’s sustainability goals, materials from the original cottage were reused wherever possible, including the staircase, banister, and spindles; beadboard paneling; red pine floor planks; interior doors; bathroom fixtures, and some kitchen cabinets.

Products Used

PFB® insulating building products were used throughout the Lakeside Green Cottage. The high insulating properties of the products are due to their primary component, expanded polystyrene  (EPS), a rigid foam material that has special properties due to its structure. The individual cells of low-density polystyrene make EPS extremely light and strong, able to support many times its own  weight. The individual cells prevent heat and air from moving through the EPS, making it a great insulator. 

 

Advantage ICFs were used for the foundation of the cottage. These insulated concrete forms are interlocking blocks of EPS insulation with a void in the center. Once the blocks are in place and are filled with concrete, they create a poured, insulated foundation in one step. The ICF  blocks remain in place, isolating the concrete and preventing temperature conduction from the outdoors. Plasti-Fab Durofoam flexible insulation was installed beneath the basement floor, working in concert with the ICFs to create an unbroken “envelope” below grade. The foundation walls have an R-value of 23 and the floor is R15.

 

Insulspan SIPs are an “insulation sandwich” made of two sheets of structural oriented strand board (OSB) laminated to a continuous core of expanded polystyrene insulation (EPS). The resulting panels were used for walls and roofs, allowing the structure to be erected and insulated in one step. The span of solid insulation left no room for air movement, vastly improving energy efficiency compared to traditionally framed construction methods. The vaulted ceiling had an R-value of 38. And the whole home had 1.5 Air Changes per Hour.

Structural Timbers 

Timber framing, a centuries-old construction method, uses visible timbers as the building’s structural  “skeleton.” Timber framing requires less wood than conventional construction and makes use of a renewable resource. In addition, harvesting mature, healthy trees for this purpose ensures that the CO2 the wood has absorbed stays put, rather than being released back into the atmosphere. 

Riverbend Timber Framing created the visible posts and beams that were used on the first floor, with timber trusses supporting the roof and creating vaulted ceilings in the second-story bedrooms. 

The timber was forest salvaged Douglas Fir from fire-damaged forests and thus contributed further to the sustainability of the construction.

The Home Energy Rating 

The Bakers were committed to excluding fossil fuels from their summer home. So they used electric baseboard heat, electric hot water, and an electric stove, so they no longer use natural gas in their home; and when their local grid moves to renewable energy they will be totally fossil fuel free. Because it is a summer home they initially decided that it was not cost-effective to invest in heat pump HVAC or heat pump water heating. Nonetheless, this super airtight and highly insulated 2,479 square foot home qualified for the  NAHB’s National Green Building Standard certification at the Emerald level – the program’s highest and most demanding certification, which requires a  high level of resource and energy efficiency. The original HERS rating was 68 based on projected year-round use. 

Improving the HERS Rating

Several years after the home was completed in 2010, the Bakers replaced the baseboard electric heating with heat pump mini-splits and plan to replace the standard electric water heater with a heat pump water heater. And they are planning to have their energy consultant conduct blower-door-directed air sealing to check for and remedy any air leaks that may have occurred due to settling over the last 12 years. Then they will obtain another HERS rating. They are projecting that these energy upgrades will lower their energy use significantly and they are projecting receiving a HERS rating below 50 – qualifying the home for zero energy ready status.

Zero Energy Ready

For a home to qualify as zero energy ready it must have a HERS rating of 50 or less and be capable of having all its energy needs met by renewable rooftop solar.  While the Baker’s home is designed with roof orientation, area, and slope sufficient to enable rooftop solar, adding solar panels would not be cost-effective since it is not a year-round residence. Nonetheless, the Zero Energy Ready Home status ensures that energy costs will be very low and that its operational energy use will have a minimal carbon impact. With these new ratings, the Bakers plan to continue using their home and their more recent energy-efficient upgrades to educate and inspire others to get their homes on the path to zero through the Lakeside Environmental Stewardship Society (LESS) of Lakeside Chatutauqua. 

.

By Frank Baker

Frank Baker is the founder of Riverbend Timber Framing and Insulspan in Blissfield, Michigan. He is a founding member and President of Team Zero, a non-profit organization committed to building consumer demand for zero energy and zero carbon homes. He is also the current president of LESS and advocates for renewable energy with his son Peter through his website lenaweesolar.com.

 

Reference

Double Stud Wall Simplified – Low Cost, High Performance
CategoriesSustainable News Zero Energy Homes

Double Stud Wall Simplified – Low Cost, High Performance

Simplify

The double-stud wall is a well-established method for creating a very economical, durable, and high R-value assembly in new construction – and is one reason it’s included as one of the basic 475 Smart Enclosure System assembly types. We know pushing standard code-minimum construction toward high performance is complicated. So we’re always looking for ways to simplify – to simultaneously reduce cost while optimizing efficiency and occupant comfort. Integrated with Pro Clima air sealing and moisture control components, the double-stud wall provides unmatched economic value, safety from moisture damage, and long-lasting performance.

Go Sheathingless

With Pro Clima component integration, we’re taking it one step further. Below we illustrate a sheathingless double-stud wall (that’s right: no structural sheathing) that provides the following characteristics:

  • Minimized material costs
  • Maximized moisture drying potential
  • Removal of formaldehyde, VOC’s and other toxic chemicals commonly found in SPF, rigid foams, OSB, and plywood
  • Easily adjustable wall thickness to meet your design R-value
  • Space between walls for continuous insulation
  • Utilization of dense-pack insulation (Gutex wood THERMOFIBER, cellulose, fiberglass, mineral wool, or Havelock Wool).
  • No special materials or connections needed for the framing components
  • Fits with the typical platform framing method

You can still frame your walls on the deck and raise them into place,  but without all that sheathing they’ll be a lot lighter. With this system, you build a house out of 2x4s, fibrous insulation, SOLITEX MENTO Plus weather-resistive barrier outboard, INTELLO Plus smart vapor retarder inboard, and not much else.

The Framing

The wall consists of an inner load-bearing wall and an outer exterior finishing wall. The floor and roof loads are stacked on top of the inner wall studs. This method can allow the use 24″ o.c. advanced framing assembly if your floor and roof loads meet the design criteria. The inner wall is framed like any other stick-built wall, with the exception that the shear load is carried by 2x lumber nailed, or metal strapping mechanically fastened, diagonally, to the outside face of the inner stud wall – in the insulation cavity.

It’s important to note that each structure will have very different shear and uplift retention requirements due to variables in building height, the number of windows, local codes, shape of building, seismic requirements, etc. The outer wall is connected to the decks as outriggers, there to support the insulation and finished facade elements, and consequently, it requires minimal framing material and opening headers. In taller walls, it’s important to connect the inner and outer studs for additional strength as well as partition the bays every second bay – to make dense-packing of the double stud cavities easier to reach proper density and maintain quality control.

The Integrated Service Cavity

With this approach, the inner wall studs act as the service cavity without the need for additional strapping to support the interior finish – making it an integrated service cavity. This approach takes planning but allows for fewer steps and less material. An excellent example of this approach is demonstrated in our Project Spotlight: Vermont Integrated Architecture. Leicester, VT.

Two Air Barriers Too

To optimize the insulating value of the dense-pack insulation – airtight membranes are placed on both sides of the fibrous insulation, thereby preventing thermal bypass, as well as optimizing the drying reserves of this highly insulated wall. At the interior side is the INTELLO PLUS membrane, airtight with intelligent vapor control, making it vapor open in the summer to facilitate inward drying and vapor retarding in the winter to prevent vapor accumulation into the insulation. The INTELLO Plus is reinforced so that it substitutes for the typical mesh used in a dense-pack installation. At the exterior side is SOLITEX MENTO PLUS: airtight, waterproof, reinforced and vapor open, allowing for maximum drying potential to the outside without being restricted by an exterior sheathing, like plywood or OSB, which are Class II or low Class III vapor retarders.

Windows & Penetrations

The window is installed into a plywood box that ties together the inner and outer walls. We offer a wide selection of window air sealing tapes, but to keep it simple you need only TESCON PROFIL, or the even faster TESCON PROFECT, for the airtight connections at the interior and exterior of the window. (And don’t forget to pre-make your window corners!). At the sill heavy-duty self-sealing waterproofing is provided by EXTOSEAL ENCORS. There are multiple ways to create a thermal bridge free window installation – there are many variables depending on the window type and brand.

The most important thing is to make sure that the window is precisely connected to your interior and exterior airtight and moisture control layers. This will ensure that your installation will not have condensation due to air movement at this thermally weak intersection. Small air leakage at this connection will allow the interior winter humidity to enter the insulated cavity. Making an air-tight connection at all openings is the best way to prevent future structural damage.

Learn More

For more details and variations on this concept, download  475’s free CAD details and ebook for 475 Smart Enclosure Double-Stud Assemblies.

By 475 Building Supply

This guest blog was originally published on the 475 Building Supply blog.

Reference

A Lakeside Summer Home Rebuilt on the Path to Zero
CategoriesSustainable News Zero Energy Homes

A Lakeside Summer Home Rebuilt on the Path to Zero

The blue cottage in a historic Chautauqua community in Lakeside, Ohio, had hosted families for nearly a century and had been the beloved summer getaway of Frank and Brenda Baker’s family for the past 15 years. So when a tree fell on their summer home in June 2009, it crushed more than just the structure. At first, the Bakers hoped to save some of the original building, but a thorough inspection determined that even the areas that didn’t take a direct hit were too compromised to be reused. That news prompted the Bakers’ plan B: to rebuild the cottage from the ground up as a model of energy efficiency and sustainable building while maintaining the character of its 100-year-old  predecessor. To that end, they hired both a designer and a builder experienced in both sustainability and historic preservation.

Frank and Brenda have christened their project “The Lakeside Green Cottage” and have engaged like-minded professionals to bring it to life. Their designer, Dennis Feltner is an advocate for eco-friendly design and plans to adapt the sustainable building principles used in this home into his future work.  Additionally, the construction contractor, Tom Dearth, is a Certified Green Builder through the National Association of Homebuilders. Partnering with the  Lakeside Association’s sustainability initiative, the Lakeside Environmental Stewardship Society, the Bakers host tours of the cottage to help educate the public about the value of green renovations. “We want to show people that eco-friendly building technology and historic character can go hand-in-hand,” Frank Baker said. 

“We really think this will be an asset to the community, and perfectly aligned with the Lakeside spirit and mission, he adds. 

Sustainable Building  Measures

The Baker cottage incorporates timber frame construction, with visible posts and beams used on the first floor.  Timber trusses support the roof and create vaulted ceilings in the second-story bedrooms. They used structural insulating products for the shell of the house, incorporating structural insulating panels (SIPs), insulating concrete forms (ICFs), and flexible EPS insulation sheets. The result is a super-tight building envelope that keeps conditioned air in, vastly reducing energy use – and energy bills.

In keeping with the Baker’s sustainability goals, materials from the original cottage were reused wherever possible, including the staircase, banister, and spindles; beadboard paneling; red pine floor planks; interior doors; bathroom fixtures, and some kitchen cabinets.

Products Used

PFB® insulating building products were used throughout the Lakeside Green Cottage. The high insulating properties of the products are due to their primary component, expanded polystyrene  (EPS), a rigid foam material that has special properties due to its structure. The individual cells of low-density polystyrene make EPS extremely light and strong, able to support many times its own  weight. The individual cells prevent heat and air from moving through the EPS, making it a great insulator. 

 

Advantage ICFs were used for the foundation of the cottage. These insulated concrete forms are interlocking blocks of EPS insulation with a void in the center. Once the blocks are in place and are filled with concrete, they create a poured, insulated foundation in one step. The ICF  blocks remain in place, isolating the concrete and preventing temperature conduction from the outdoors. Plasti-Fab Durofoam flexible insulation was installed beneath the basement floor, working in concert with the ICFs to create an unbroken “envelope” below grade. The foundation walls have an R-value of 23 and the floor is R15.

 

Insulspan SIPs are an “insulation sandwich” made of two sheets of structural oriented strand board (OSB) laminated to a continuous core of expanded polystyrene insulation (EPS). The resulting panels were used for walls and roofs, allowing the structure to be erected and insulated in one step. The span of solid insulation left no room for air movement, vastly improving energy efficiency compared to traditionally framed construction methods. The vaulted ceiling had an R-value of 38. And the whole home had 1.5 Air Changes per Hour.

Structural Timbers 

Timber framing, a centuries-old construction method, uses visible timbers as the building’s structural  “skeleton.” Timber framing requires less wood than conventional construction and makes use of a renewable resource. In addition, harvesting mature, healthy trees for this purpose ensures that the CO2 the wood has absorbed stays put, rather than being released back into the atmosphere. 

Riverbend Timber Framing created the visible posts and beams that were used on the first floor, with timber trusses supporting the roof and creating vaulted ceilings in the second-story bedrooms. 

The timber was forest salvaged Douglas Fir from fire-damaged forests and thus contributed further to the sustainability of the construction.

The Home Energy Rating 

The Bakers were committed to excluding fossil fuels from their summer home. So they used electric baseboard heat, electric hot water, and an electric stove, so they no longer use natural gas in their home; and when their local grid moves to renewable energy they will be totally fossil fuel free. Because it is a summer home they initially decided that it was not cost-effective to invest in heat pump HVAC or heat pump water heating. Nonetheless, this super airtight and highly insulated 2,479 square foot home qualified for the  NAHB’s National Green Building Standard certification at the Emerald level – the program’s highest and most demanding certification, which requires a  high level of resource and energy efficiency. The original HERS rating was 68 based on projected year-round use. 

Improving the HERS Rating

Several years after the home was completed in 2010, the Bakers replaced the baseboard electric heating with heat pump mini-splits and plan to replace the standard electric water heater with a heat pump water heater. And they are planning to have their energy consultant conduct blower-door-directed air sealing to check for and remedy any air leaks that may have occurred due to settling over the last 12 years. Then they will obtain another HERS rating. They are projecting that these energy upgrades will lower their energy use significantly and they are projecting receiving a HERS rating below 50 – qualifying the home for zero energy ready status.

Zero Energy Ready

For a home to qualify as zero energy ready it must have a HERS rating of 50 or less and be capable of having all its energy needs met by renewable rooftop solar.  While the Baker’s home is designed with roof orientation, area, and slope sufficient to enable rooftop solar, adding solar panels would not be cost-effective since it is not a year-round residence. Nonetheless, the Zero Energy Ready Home status ensures that energy costs will be very low and that its operational energy use will have a minimal carbon impact. With these new ratings, the Bakers plan to continue using their home and their more recent energy-efficient upgrades to educate and inspire others to get their homes on the path to zero through the Lakeside Environmental Stewardship Society (LESS) of Lakeside Chatutauqua. 

.

By Frank Baker

Frank Baker is the founder of Riverbend Timber Framing and Insulspan in Blissfield, Michigan. He is a founding member and President of Team Zero, a non-profit organization committed to building consumer demand for zero energy and zero carbon homes. He is also the current president of LESS and advocates for renewable energy with his son Peter through his website lenaweesolar.com.

 

Reference