We need to design for human behaviour to get rid of single-use plastics
CategoriesSustainable News

We need to design for human behaviour to get rid of single-use plastics

Packaging designs aimed at boosting recycling rates and reducing the prevalence of single-use plastics are destined to fail unless they help to change people’s behaviour, writes Matt Millington.


No one is particularly happy when they find out there’s plastic waste on Mount Everest, or in the deep oceans, or in human blood. It’s not controversial to say that we need to stop churning the stuff out and throwing it away.

One way for businesses to tackle single-use plastics is to design their packaging to be reusable, but so far efforts have not succeeded at scale.

For example, reusable McDonald’s cups are only getting a 40 per cent return rate from customers in Germany, despite consumers paying a €2 deposit. When Starbucks trialled reusable cups in the closed environment of its Seattle HQ, where returning them is presumably straightforward, the return rate still didn’t exceed 80 per cent.

We weren’t exactly succumbing to dehydration on the streets before coffee shops designed takeaway cups

It’s not that we don’t care: research suggests consumer motivation towards environmentally positive behaviour is high. It’s that as a society we have developed an expectation of convenience: to have what we want, when we want it, without any consequences.

This is entirely unreasonable – we weren’t exactly succumbing to dehydration on the streets before coffee shops designed takeaway cups – but while it persists, consumers are very unlikely to switch to reusable alternatives if it puts them out. And without a high return-and-reuse rate, reusable packaging is usually worse for the environment, owing to the much higher quantities of plastic involved.

This is why we need to design for human behaviour if we’re ever to get rid of single-use plastics. You cannot control what people will do with packaging once it leaves your premises, but you can influence them by factoring behavioural psychology into the design of the packaging itself.

The first step is understanding how consumers interact with the pack, throughout its lifecycle. Where are they and what are they doing when they open it? What’s their headspace? How about when they’re finished with it? There’s a big difference between how someone interacts with a reusable plate after a meal in a cafeteria, and how they interact with the reusable salad bowl they’re gobbling from on the lunchtime rush back to the office.

Then it’s about understanding the levers you can pull to nudge people towards more planet-positive decisions. Behavioural psychology shows there are three factors that work together to drive behavioural change: increasing consumer motivation to recycle or reuse, raising their ability to do so, and providing a trigger to remind them.

Take plastic bags. While usage of single-use bags has dramatically decreased in the UK since legislation requiring retailers to charge for them came into force in 2015, reusable alternatives have had mixed success. According to a report by the Environmental Investigation Agency and Greenpeace, 57 “bags for life” were sold for each household in the country in 2019 – more than one a week.

It’s possible to go too far in signalling that a pack isn’t disposable

Online grocer Ocado uses recyclable bags instead, but it has had success in achieving returns because it pulls all three behavioural psychology levers. Consumers are happy to receive bonus reward points for each bag they give back (motivation).

The bags are straightforward to return and customers know not to throw them away because of their clear messaging and distinct off-grey colour, which follows from not using harmful bleaching agents (ability). And because the driver usually asks for old bags after delivery, they’re unlikely to forget (trigger).

Ability is the key consideration. If you wanted to return the packaging from a takeaway burger meal, it would mean washing and then carrying around a bulky burger box, fries box and cup, and either making a special trip to the restaurant or waiting until you happen upon another branch.

New Zealand start-up FOLDPROJECT has done some interesting work here, trying to make boxes more portable. It’s a simple idea: a machine-washable lunch kit that packs down to a flat sheet. The challenge is that because it is so minimal, its form and material make it look disposable.

One way to ensure a reusable design communicates its intended purpose is through material choice. For example, using explicitly post-consumer recycled plastic could be a visual shorthand to communicate a planet-positive intent, as could using longer-lasting materials like glass or stoneware.

Interestingly, it’s possible to go too far in signalling that a pack isn’t disposable. When McDonald’s introduced reusable packaging in its restaurants in France, it found the packaging kept disappearing, only to reappear on eBay. It looked reusable and on-brand, but was too novel for some, defeating the object.

So long as we have bins on every street that lead directly to landfill, we are going to struggle

Businesses cannot just switch to reusable packaging – even when intelligently designed – and expect results. So long as we have bins on every street that lead directly to landfill we are going to struggle.

We therefore need to think beyond just designing the packaging to be sustainable, and think about how we design systems to be sustainable. In a circular economy that means service and experience design, packaging, industrial design, marketing, data, artificial intelligence and logistics all working hand-in-hand to keep the pack “in the loop”. It will therefore need to be an ecosystem effort.

We’re already seeing innovations that can help make reuse and return viable in the age of convenience. For example, when is a bin not a bin? When it’s a Bjarke Ingels Group-designed TURN system – a remote, digitally connected, RFID-enabled, packaging-asset reclaim and sorting network, which rejects unwanted trash.

Similarly, we’re seeing nudge messaging along the pack journey, and even packs that communicate their status themselves. Scottish start-up Insignia has designed colour-changing labels that reveal how long a pack has been exposed to the environment. Imagine taking this further, with reusable packaging telling you what to do with it, and offering prompts or rewards to encourage you.

Reusability hasn’t hit scale yet, but we should be optimistic that it can, not least because we’ve been there before. Milk deliveries were once the norm, with bottles returned, not discarded.

There’s no reason that we can’t get back to this more sustainable approach across the board, without having to endure too much inconvenience. All that’s required is a little ingenuity, and a lot of collaboration.

The photography is by Jas Min via Unsplash.

Matt Millington is a sustainable-design strategist at PA Consulting.

Dezeen In Depth
If you enjoy reading Dezeen’s interviews, opinions and features, subscribe to Dezeen In Depth. Sent on the last Friday of each month, this newsletter provides a single place to read about the design and architecture stories behind the headlines.

Reference

CornWall gives discarded corn cobs new life as interior tiles
CategoriesSustainable News

CornWall gives discarded corn cobs new life as interior tiles

Materials companies Circular Matters and StoneCycling have used corn cobs – one of the world’s most plentiful agricultural waste materials – to make interior cladding that is biodegradable and almost entirely bio-based.

Available in the form of tiles and sheets, CornWall is intended as a more sustainable alternative to ceramic interior wall tiles or plastic laminate.

The material is derived from more than 99 per cent renewable, biological sources, is created at low temperatures using mainly solar power and emits less carbon dioxide in its production than was captured by the corn as it grew, the manufacturers claim.

Photo of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomassPhoto of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomass
CornWall is an interior cladding material that is 99 per cent bio-based

To give the products a long lifespan, Circular Matters and StoneCycling have produced the tiles with a mechanical fixing system, so they can be demounted and reused or given back to the company for cleaning and recycling.

The technology behind CornWall was invented by Circular Matters – a start-up spun out of a lab at Belgium’s KU Leuven University, where founder Pieter Dondeyne and his team found a way to process plants to enhance their natural biopolymers and create durable materials.

The team then partnered with Dutch company StoneCycling to channel their technology into a product.

Photo of a person, close-up on their hands, holding a small pile of bare corn cobs, their kernels removedPhoto of a person, close-up on their hands, holding a small pile of bare corn cobs, their kernels removed
Corn cobs make up most of the composition of the tiles

StoneCycling co-founder Ward Massa told Dezeen that the focus on corn came because it is one of the most grown crops on the planet and its waste is abundant.

“What happens when you grow corn for human consumption is when it’s ready to harvest, you take off the corn and the corn cob is a leftover material because it doesn’t hold any nutritious value,” he said.

“Usually, that means that these corn cobs remain on the field and rot away, or they are burned as biomass to generate energy,” he continued. “In both cases, you release the carbon that was stored in those fibres – it rots away and it gets released, or you burn it and it gets released.”

With CornWall, the carbon is locked away until the tiles reach the end of their life and are left to decompose.

The production process begins with the discarded cobs being collected, dried and shredded into biomass.

This material is then mixed with other agricultural waste, binders and pigments and pressed into a plate material at a relatively low heat of 120 to 150 degrees. As a final step, the tiles are given a thin coating for water resistance.

All of the ingredients are derived from biomass apart from the pigment, which accounts for the 0.5 per cent of the product that is not bio-based – a very low percentage in a field where even products containing small amounts of materials of organic origin are sometimes labelled as bio-based.

Photo of a person at a distance standing in a huge warehouse of bare corn cobs piled high into hillsPhoto of a person at a distance standing in a huge warehouse of bare corn cobs piled high into hills
The agricultural waste material was chosen because of its abundance

According to Massa, the companies were able to keep the product pure by focusing on interior wall applications only.

“If you want to create a product that can also be used on the exterior or as a flooring or in the shower, then you have to start adding chemicals to bind it, to make it more water resistant and stuff like that,” he said.

“We chose to start with this application because it’s relatively easy and the binder and the product is nothing else than the natural polymers that are already part of this biomass. Because of adding heat and pressure, these polymers are activated and bind together.”

Photo of four objects in flatlay — a full corn cob on the left, followed by a bare corn cob, then a small tray of shredded biomass, then a CornWall tilePhoto of four objects in flatlay — a full corn cob on the left, followed by a bare corn cob, then a small tray of shredded biomass, then a CornWall tile
The corn cobs are dried and shredded before being pressed into tiles

CornWall is also biodegradable according to official standards, with Massa saying it could be buried in a field and disintegrate in a couple of months.

The only thing that would remain is the water-resistant coating, which is not biodegradable but makes up less than 0,001 per cent of the total product meaning it does not affect its biodegradability overall, according to Massa.

“Unfortunately there are no 100 per cent biodegradable coatings on the market yet,” he said. “We’re working with our suppliers on this but it’ll take more time.”

Instead, the intent is to keep the product in use for as long as possible.

The companies wants to target retail and hospitality chains that frequently open and close locations – Starbucks is an example Massa gives – and work with them to make sure the tiles stay in a closed loop of material reuse.

He also believes CornWall offers good options for these kinds of businesses in the design stage, as it can be ordered in custom colours and embossed patterns to complement their branding.

Photo of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomassPhoto of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomass
The tiles are available in a base range of six colours

“As far as we are concerned, this will become the new retail material,” said Massa. “Especially in those places in retail where they now use materials that are either glued or take a lot more energy to make or create a lot of waste when the shops are being renovated or demolished.”

“Production can also be done regionally because you don’t need a very complicated factory for it.”

CornWall is currently available in a base range of six colours and two sizes, developed in collaboration with Dutch design practice Studio Nina van Bart. Massa says additional textures will soon be added to the line.

CornWall is the fourth product from StoneCycling. The first was the WasteBasedBrick, which is made from 60 per cent waste and was used by Dutch architects Nina Aalbers and Ferry in ‘t Veld of Architectuur Maken to build their own house in Rotterdam.

Reference