Sap flow sensors for smart water use
CategoriesSustainable News

Sap flow sensors for smart water use

Spotted: Agriculture production is both the largest user of water worldwide, and a major water polluter. According to the Organisation for Economic Co-operation and Development, climate-change-induced water shortages are expected to become more frequent. In addition, farmers in many regions are facing increasing competition for water due to rising urban population density and rapid growth of the energy and industry sectors. 

One way to help farmers reduce water use, as well as water pollution, is to use only as much water as each plant needs, avoiding runoff and excess usage. To make this a reality, startup Treetoscope has developed a platform that integrates AI, weather data, satellite imagery, and other remote sensing technologies to provide real-time sap and water uptake data.

Treetoscope’s sensor uses a heat dissipation model to measure the movement of water (sap flow) within the xylem of trees and vines. The sensor detects the distortion of the heat field around the probe, which is directly related to the velocity of water movement. The irrigation management platform is unique and integrates with other weather data to provide growers with insights into irrigation management.

In September last year, the company announced additional investments to its latest seed funding round, bringing the total raised in this round to over $7 million (around €6.5 million), and total investments of $10 million (around €9.3 million), including grants from the Israel Innovation Authority and the Bird Foundation. The funds will be used for research and development and speeding up the expansion across North America and beyond.

Reducing water use in agriculture is also the subject of innovations such as seeds that are more resilient to water scarcity and AI-driven irrigation.

Written By: Lisa Magloff

Reference

The world’s largest flow battery energy storage system
CategoriesSustainable News

The world’s largest flow battery energy storage system

Spotted: As the world strives to achieve carbon neutrality, energy storage technology is becoming increasingly important. Renewable energy sources like wind and solar power are intermittent, meaning they’re not always available when needed. Energy storage can help to even out these fluctuations, making renewables a more reliable and consistent source of power. One of the largest energy storage projects in the world is currently being completed in Dalian, China.

The Dalian Flow Battery Energy Storage Peak-shaving Power Station will have a capacity of 100 megawatts/400 megawatt-hours, making it one of the largest storage facilities in terms of both power and capacity. The project is due to be completed in mid-October and will play an important role in helping China meet its climate goals.

The Dalian Power Station, which is based on vanadium flow battery technology developed by the Dalian Institute of Chemical Physics (DICP), will serve as the city’s power bank while helping Dalian make use of renewable energy – such as wind and solar energy. The Power Station will convert electrical energy into battery-stored chemical energy and back into electrical energy, providing a reliable source of power for the city.

The power station plans to meet the daily electricity demand of about 200,000 residents. Looking ahead the aim is for these numbers to increase as the power station eventually produces 200 megawatts/800 megawatt-hours of electricity. The Power Station is an important step in Dalian’s transition to a clean energy future, and it is hoped that it will help to make the city a model for others in China and around the world.

The roll-out of renewables is gathering pace and with that roll-out comes innovation in energy storage. Springwise has recently spotted innovations such as a thermal energy storage system and a new system that stores energy in the form of heat and compressed air.  

Written By: Katrina Lane

Reference