Decarbonize Your Hearth with an Electric Fireplace
CategoriesSustainable News Zero Energy Homes

Decarbonize Your Hearth with an Electric Fireplace

Humans have a primal attraction to a crackling flame and the ambience of a cozy fireplace. Architect Frank Lloyd Wright called the hearth the “the psychological center of the home,” and designed all his residences around a central fireplace.

For the majority of humans who now live in urban areas, a traditional wood-burning fireplace is not a practical or healthy option (for reasons we explain below). This reality has made gas fireplaces popular because they pair the beauty of fire with the convenience of a switch and without the hassle of chopping wood and lighting a flame. But because elimination of gas is a fundamental tenet of decarbonized living, and we all love a cozy fire, we need alternative decarbonized hearth options. Enter the electric fireplace.

The State of American Fireplaces

First, a little context on the hearths in American homes. Many new homes in the US have a fireplace, yet the traditional wood-burning one is disappearing. New homes with fireplaces of any kind declined by almost two-thirds from 1978 to 2017, possibly because fireplaces are plagued with problems like heat loss through the chimney, indoor air pollution, and risk of fire spreading. However, according to the National Association of Home Builders’ What Home Buyers Really Want, 55% and 48% of home buyers rate gas- and wood-burning fireplaces, respectively, as desirable or essential, and this share has been increasing since 2003.

Why Fireplaces Matter

Research consistently finds that traditional wood-burning and gas stoves are bad for indoor and outdoor air quality and create serious issues for human health and the environment. Burning wood releases harmful gas and particulate matter that leads to respiratory issues for people living in the home and around it. It’s one of the biggest sources of air pollution in the county where we live. Natural gas also pollutes indoors through combustion and leaks and releases significant outdoor pollution, including NOx and carbon dioxide. Air quality districts in California are beginning to phase out any natural gas combustion in the home because the air pollution exceeds that of gas power plants. Other countries have similar issues. In the UK, for example, fireplaces and stoves are now the largest single source of primary particle pollution, greater than traffic and industry!

Fortunately there is a great way to create a clean, healthy, low-carbon ambience with the feel of old school flames: the electric fireplace is the future home hearth. Because electricity is getting dramatically cleaner every year, with the rise of renewables and the demise of coal, electric fireplaces offer a cozy vibe without any of the negative health or environmental impacts.

Until recently, fireplaces were synonymous with combustion, and the words “electricity” and “fire” were rarely paired together in a positive way. When we think of electric heat, many of us imagine the glowing red, inefficient electric resistance coils that are hardly associated with a comforting fireplace. But like so many new, clean electric home technologies, the electric fireplace has undergone rapid, and appealing, changes over the past 10 years.

Mid-closeup of electric fireplace shows no-pollution "coals and flames" - photo

Benefits of Electric Fireplaces

The electric fireplace is a radically improved, often overlooked technology that has a lot going for it:

  • Ambience: You may be surprised to know that electric fireplaces can provide a great-looking flame. Thanks to LEDs and a mirror element that rolls and reflects light, many electric flames look pretty realistic. You can enjoy them around the clock and any time of year because most models allow you to use the flame without the heat. Some models offer an option to change the color below the flame, which is our kids’ favorite party trick. Some varieties come with a material that sits in front of or below the flame to anchor it like a real fire. Since there’s not a real flame, you can use whatever material you want, including wood or stone to give it a natural look.
  • Safety: Unlike combustion fireplaces, the electric varieties have no risk from open flames or sparks that could lead to an uncontrolled fire. They are cool to the touch, making them great for homes with kids and pets. They safely operate near other appliances, including below TVs, which is a common set up.
  • Cost: Electric fireplaces are, by far, the most inexpensive type of fireplace to buy and install. The unit itself averages $1000, but you can find models as low as $200, compared to $1500 to $3500 for a gas fireplace insert. They are also much cheaper to install than gas or wood stoves, which typically run $2,000 to $10,000, because they require no outdoor venting or permitting. They simply plug into an outlet.
  • Improved Air Quality and Health: As discussed above, burning wood and gas creates significant amounts of indoor and outdoor air pollution. 
  • Carbon-Free: Of course, for us, committed to decarbonizing our lives, the number one benefit is the ability to remove natural gas from your home and run a fireplace on clean, emissions-free electricity.

Our Electric Hearth

Our 1987 ranch home didn’t have any kind of fireplace when we bought it in 2012. In 2015 we moved a pellet stove from our former house into an addition we built (we’ll cover the pros and cons of pellet stoves in a future article). In 2020, after hunkering down at home during the peak of the pandemic, we decided to invest in some home hygge and create a hearth to define our main living area, hide an unsightly electrical panel, and provide some storage. This simple, affordable project improved our home’s beauty, functionality, and carbon impact.

After much online research, we went to a local Portland electric fireplace store to check out the electric flames in person. We opted for a Dimplex because of the size (20 by 34 inches), which was the right proportion for our design, and realistic flame. We designed a hearth, mantle, and built-in cabinets and hired a local handy-person to put it all together over a long weekend when we were out of town.

The fireplace unit cost $700 and we spent close to $2500 on labor, lumber, drywall, and minor electrical work to build the hearth. This cost includes the plywood cabinets on either side.

The fireplace wonderfully defines our living room, which previously felt a bit anchorless in our open plan living area. It also provides heat, though we don’t turn on the heating element very often because it’s electric resistance, and our ductless heat pump is on the same wall. It came with unappealing plastic jewel-like rocks that sit on an interior shelf below the flame, and we replaced them with real rocks from the Oregon coast.

Options for Your Electric Hearth

While we went for the built-in model because of our other project goals, there are lots of options for standalone electric fireplaces. Our product selection was based on the dimensions that best fit our design and had the most realistic looking flame. Depending on your goals, and the configuration of your home, you may consider one of the following:

  • Wall mounted can be hung right on your wall, like a piece of art or flat-screen TV.
  • Built-ins fit into a custom structure so they are flush with the wall, like our fireplace.
  • Inserts are well suited for homes with existing wood burning fireplaces and can sit in the existing opening.
  • Standalone models allow you to plug a fireplace into any outlet and create great ambience in any room. A great option for renters.
  • Water Vapor is even an option! These can be filled manually or connected to a water line to create vapor resembling smoke.

While you can find electric fireplaces that cost thousands of dollars (typically the long narrow, built-in variety), all of the models shown here are only a few hundred.

For more on electric fireplaces, check out this fireplace guide from Modern Blaze and this Electrify Now video.

This article is part of a series by Naomi Cole and Joe Wachunas, first published in CleanTechnica. Through “Decarbonize Your Life,” they share their experience, lessons learned, and recommendations for how to reduce household emissions, building a decarbonization roadmap for individuals.

The authors:

Joe Wachunas and Naomi Cole both work professionally to address climate change—Naomi in urban sustainability and energy efficiency and Joe in the electrification of buildings and transportation. A passion for debarbonization, and their commitment to walk the walk, has led them to ductless heat pumps, heat pump water heaters, induction cooking, solar in multiple forms, hang-drying laundry (including cloth diapers), no cars to electric cars and charging without a garage or driveway, a reforestation grant from the US Department of Agriculture, and more. They live in Portland, OR, with two young children.

 

Our team researches products, companies, studies, and techniques to bring you the best of zero building. Zero Energy Project does not independently verify the accuracy of all claims regarding featured products, manufacturers, or linked articles. Additionally, product and brand mentions on Zero Energy Project do not imply endorsement or sponsorship unless specified otherwise.

Reference

We Are the Rare, Repeat Heat Pump Water Heater Customers
CategoriesSustainable News Zero Energy Homes

We Are the Rare, Repeat Heat Pump Water Heater Customers

The word is now out, and sales of heat pump water heaters (HPWHs) are taking off. New rebates, mandates, and tax credits will likely drive sales through the roof by the end of this decade. Heat pump water heaters use a fraction of the energy of legacy technologies, with great performance, which means lower utility bills along with reduced carbon emissions. We’ve embraced the technology on our journey to electrify two different properties, and we were among the first in the US to buy and install a 120V plug-in heat pump water heater at our family home in Ohio.

Why do we sing their praises?

Cost!

The heat pump water heater is among the most affordable climate-saving technologies available. While solar panels and electric cars are vital tools for climate warriors, a heat pump water heater saves the energy equivalent of seven solar panels while costing only one-sixth the price. They run approximately $1600 for the appliance, plus $1000 to $3000 for installation, depending on the fuel your current water heater uses. This cost is higher than traditional gas or electric-resistance water heaters, but many utilities offer rebates to bring down the price. And then add the 30% tax credit from the Inflation Reduction Act, if the property is your primary residence.

If your current water heater is gas, you may need to run a 240V electrical line, unless you get a new 120V plug-in model (for more info on this option, read about our fourth install below). If your current water heater is electric-resistance, it should already have a 240V line running to it, likely allowing a simple swap.

Efficiency

Hot water accounts for a substantial share of energy use in buildings—17% in single family homes and up to 32% in multi-family—hundreds of dollars a year. Heat pumps move heat rather than create it. So heat pump water heaters are three to five times more efficient than standard water heaters. They look just like a legacy water heater, but a bit taller because the heat pump sits on top of the water tank.

They cost very little to operate: $100 to $150 a year for a family of four, saving $550 compared to an electric resistance water heater and $200 less than a gas water heater. A new heat pump water heater can pay for its higher upfront cost in just a few years. And then it’s saving you money each year after that.

Graphical image depicting carbon savings of heat pump water heater; text reads "A heat pump water heater saves 1 ton of CO2 per year. That's like planting 17 trees"; imagery includes trees and water heater plus logo of Advanced Water Heating Initiative

Source: Advanced Water Heating Initiative.

Carbon

Sure heat pump water heaters are super energy efficient, but they also run on electricity, which means they can use renewable electricity. Replacing a single gas water heater with a heat pump unit will save around 1 ton of CO2 annually.

And the word is out. While heat pump water heaters currently account for only less than 2% of new water heater sales, they jumped 26% in 2022 as sales of natural gas water heaters fell. Heat pump water heaters could increase to half of all water heater sales by 2030.

Propelling electrification

Electricity is the only widely-available, scalable fuel option that is quickly decarbonizing. So reducing climate change involves converting everything to highly efficient, clean electricity. A common critique of the electrification movement is that the electrical grid can’t handle the additional loads to replace fossil fuels used in buildings and transportation. Enter heat pumps. Widespread deployment of heat pumps in HVAC and hot water production will save tremendous energy: enough to power new electrical loads, like electric cars (EVs), on the existing grid.

Graphic showing electricity required for home EV charging can be net-zero due to energy saved by installing heat pump water heater

Heat pump water heaters (HPWH) will likely save nearly all the electricity a household needs to operate an EV.

As Americans transition to EVs over the next decade, heat pump water heaters alone will likely save nearly all the electricity that a household needs to operate an EV. This statistic shows how much energy we currently waste in heating our water. And this EV electrical load is replacing carbon-intensive gasoline and diesel fuels.

About half of the US currently has electric resistance water heaters, so as those homes switch to heat pump water heaters, we won’t have to worry about finding more electricity for EVs. Their utility bills will likely stay constant, saving them all the money they currently spend at the gas pump.

The other half of homes heats water with fossil fuels, so we will need to find added clean electricity for those water heaters and vehicles. (But transitioning electric-resistance space heaters and clothes dryers to heat pump units produces savings similar to switching out water heaters.) Most heat pump water heaters run on 240V (the same as conventional electric water heaters and dryers), but if your old water heater runs on gas, you may have to install a new power line from the panel. But a 120V plug-in model is the newest option. If your current water heater is electric, it will likely be an easy swap: no need for an electrical panel upgrade or service upsize from the utility.

heat pump water heater installed in residential closet surrounded by various tools and clothing items - photo

2017: HPWH replacing an aging water heater

Our old gas water heater was nearing its end of life, and Joe was excited about the technological advance of heat pumps for water heating. Though we still had questions about installation and performance.

It’s easiest to install a heat pump water heater in a basement or garage, because they exhaust cool air. But our heat pump water heater resides in a coat closet in the middle of our living space, venting into the attic. There it draws the warmest air in our house and exhausts to an unconditioned space. (Note that there are lots of options for locating heat pump water heaters in living spaces without ducting.)

Of course there were no local installers familiar with heat pumps back then, but after watching YouTube, Joe felt OK working with a trusted handyman. Even though it was a gas conversion, an existing 240V electrical line made things much easier. Ever since, this unit has consistently provided our family plus an Airbnb with plentiful hot water.

2019: HPWH replacing a functioning gas hot water heater

We did not get the full life out of the existing gas hot water heater in the accessory dwelling unit on our property. We chose to replace a perfectly good appliance (only 7 years old) with a heat pump water heater powered by clean solar energy. Our goal was to eliminate fossil fuels from our home. We used the same attic-ducting technique as the water heater in the main house, locating the unit in a closet. This mighty unit provides plenty of hot water for the tenant and runs the radiant floor heating system as well. (We don’t recommend heat pump water heaters for floor heating, as it is not a proven or scalable application.)

2020: HPWH replacing a decrepit gas water heater

During COVID, we undertook an interiors and sustainability renovation of a duplex in Cleveland, OH, that has been in our family for 75 years. In transitioning to all-electric, we replaced an almost 30-year-old basement water heater with our favorite heat pump. In addition to reducing our energy bill by $200 a year, it provides great dehumidification: about 2–4 quarts of water per day. If you currently run one or more dehumidifiers in your damp, Midwestern basement, you may save hundreds more.

The plumber added a new 240V power line, and ran the condensate tube to the floor drain. The basement maintains about 60 °F all winter, and we’ve never needed to engage the less-efficient backup electric-resistance heating elements.

Plumber works to install 120 V heat pump water heater - photo

2023: The new 120V heat pump water heater

This past summer, we replaced the other 30-year-old gas water heater in the basement of the Cleveland duplex. This just-arrived-on-the-market 120V unit eliminated the need to run 240V power from the panel. As heat pump enthusiasts, we were excited to test the latest tech. Perhaps the most difficult step was placing the custom order with Home Depot. Though now it’s readily available!

The installation was the easiest part. It took the plumber (who had never heard of a heat pump water heater) only 2.5 hours to complete the job, about the same as a standard gas water heater. The 120V heat pump water heater plugs right into a standard outlet. But he did have to run the condensate tube into the floor drain nearby and cap the gas line.

The 120V unit has been humming along for months—it’s very quiet—using a mere 65 kWh in the first month of operation. We monitor its performance through the manufacturer’s app, so we know it remains ridiculously efficient and almost always completely full of hot water. At a total of $3,258 installed and estimated savings of $208 a year. The 120V  models usually eliminate the backup electric-resistance heating elements by using a larger tank with more hot water stored, or by storing water at higher temperatures and then mixing in cold water to avoid scalding. Our 120V unit uses the latter strategy; see it in action.

If this were our primary residence, we might have taken advantage of the 30% tax credits for heat pump water heaters, lowering our cost to $2,281. That comes so close to the $2,000 average installed cost of a standard gas or electric water heater. And you’re still saving hundreds of dollars a year on energy costs. This proves that almost any of the 60 million US homes with a gas water heaters can easily and cheaply move towards a cleaner, decarbonized home that is less expensive to operate.

We’re big fans of making a long-term decarbonization plan, so you’re not rushing to replace broken equipment and being forced to install new circuit breakers or even a new panel or expensive electrical service upgrade. So before checking the cost of a heat pump water heater, understand your home’s installation requirements and identify a contractor or two. Then when the time, and rebates and tax credits, are right, you’re ready to switch. Because they save so much on utility bills, proactively replacing a functioning, but inefficient, water heater with a heat pump water heater may make sense—for the sake of our changing climate.

Decarbonize your life logo

This article springs from several posts by Naomi Cole and Joe Wachunas, first published in CleanTechnica. Their Decarbonize Your Life series shares their experience, lessons learned, and recommendations for how to reduce household emissions.

The authors:

Joe Wachunas and Naomi Cole both work professionally to address climate change—Naomi in urban sustainability and energy efficiency and Joe in the electrification of buildings and transportation. A passion for debarbonization, and their commitment to walk the walk, has led them to ductless heat pumps, heat pump water heaters, induction cooking, solar in multiple forms, hang-drying laundry (including cloth diapers), no cars to electric cars and charging without a garage or driveway, a reforestation grant from the US Department of Agriculture, and more. They live in Portland, OR, with two young children.

 

Reference

Norm Architects devises understated HQ for kids’ lifestyle brand Liewood
CategoriesInterior Design

Norm Architects devises understated HQ for kids’ lifestyle brand Liewood

A refined palette of oak, plaster and steel defines the interior of the Liewood headquarters in Copenhagen, Denmark, designed by local practice Norm Architects.

The pared-back 2,200-square-metre office was conceived to give prominence to Liewood‘s colourful, Scandi-style children’s clothes, toys and homeware.

Norm Architects creates minimalist HQ for children's brand Liewood
Norm Architects has completed Liewood’s Copenhagen headquarters

“With the ambition to create a comfortable space with a somewhat understated character, we worked to let the space obtain its significance through the thoughtful use of tactile elements such as textured plaster walls and contrasting elements like oakwood and steel,” explained Sofie Bak, an architect at the practice.

Staff enter the five-floor office via an airy light-filled lobby that is anchored by a rounded counter, roughly washed with sandy-beige plaster.

Norm Architects creates minimalist HQ for children's brand Liewood
Plaster podiums provide display space on the first floor

Cone-shaped pendant lights are strung along the ceiling while oversized stone tiles are laid across the floor, helping to “emphasise the grandeur” of the space.

A pre-existing staircase curves up to the first floor, which accommodates a showroom. This part of the building formerly served as a production hall, with a vast scale that could easily feel empty and unwelcoming, according to Norm Architects.

Norm Architects creates minimalist HQ for children's brand Liewood
At mealtimes, staff can gather in The Parlour

To counter this, the practice constructed what it describes as a “warm wooden core” – a house-shaped oakwood volume with built-in shelves for showcasing Liewood’s products.

Large, plaster-coated display plinths are dotted across the rest of the room. At the back is a short flight of wide, wooden stairs where staff can sit and chat throughout the day.

More products can also be presented here on bespoke podiums that, thanks to cut-outs at their base, are able to slot onto the steps.

The building’s first floor also contains The Parlour – a kitchen and dining area where Liewood employees can enjoy meals together. It features a large travertine table, a series of plump grey sofas and graphic art pieces by the Danish designer Sara Martinsen.

Norm Architects creates minimalist HQ for children's brand Liewood
Traditional work areas can be found across the rest of the HQ

Work areas throughout the rest of the HQ are furnished with practical desks and storage units that match the off-white walls, while meeting rooms are fronted with panes of glass to foster a sense of openness.

As the building’s original staircase didn’t extend all the way to the fifth floor, Norm Architects installed a spiralling set of white-steel steps.

These grant access to a space the practice refers to as The Apartment: a secondary showroom designed to have a more intimate, homely feel.

Norm Architects creates minimalist HQ for children's brand Liewood
The top floor accommodates The Apartment, a more intimate showroom

Elsewhere, Norm Architects recently took its minimalist aesthetic off-shore when designing the interiors of the Y9 sailing yacht, decked out with supple suede furnishings and wood-panelled surfaces.

The photography is by Jonas Bjerre Poulsen of Norm Architects.

Reference