A green process for recycling materials from spent lithium-ion batteries
CategoriesSustainable News

A green process for recycling materials from spent lithium-ion batteries

Spotted: Lithium-ion batteries form the basis of today’s electric vehicle (EV) technology, and their production is ramping up rapidly. According to one estimate, the global production of lithium-ion batteries is expected to increase five-fold between 2001 and 2030. But as more batteries are produced, the question of what we will do with the leftover waste becomes more pressing, as currently only a small percentage of used lithium-ion batteries are recycled (5 per cent is an often-quoted, but disputed, figure). 

Now, researchers at Rice University have found a way to recycle one of the key components of a lithium-ion battery: the graphite anode. Today, used anodes are either burned for energy or sent to landfill. 

Rice researchers developed a process called ‘Flash Joule heating’ back in 2020 to produce graphene, a ‘wonder material’ that can enhance plastics, paint, metals, asphalt, and cement. Now, a team of chemists, led by James Tour and Weiyin Chen, has re-configured the process for use in battery recycling. In the latest iteration of Flash Joule heating, a sudden and powerful jolt of energy, lasting just a few seconds, decomposes inorganic salts, such as lithium, cobalt, nickel, and manganese, found in spent anodes. These can then be recovered using dilute hydrochloric acid and re-used in anodes for new batteries.  

The team estimates that it would cost roughly $118 (around €110) to recycle one tonne of untreated anode waste using the new process. And, the researchers estimate that the ‘flashed’ anodes retain 77 per cent of their capacity after 400 recharge cycles. 

Springwise has been tracking the development of Flash Joule heating for several years and has previously spotted it being used for recovering metals from electronic waste, and turning plastic from old cars into graphene.  

Written By: Matthew Hempstead

Reference

Mitigating the impact of lithium-ion batteries in the energy transition
CategoriesSustainable News

Mitigating the impact of lithium-ion batteries in the energy transition

Spotted: Lithium-ion batteries (LIBs) look set to play a crucial role in the future of energy as the world transitions away from fossil fuels. Found in everything from electric vehicles to smartphones and computers, these batteries have several downsides when it comes to environmental impact. Lithium mining is an extremely water-intensive process that involves the use of toxic chemicals. In fact, producing each tonne of lithium requires 500,000 gallons of water. And exacerbating this problem is the fact that several of the leading lithium-producing regions, such as the Atacama Desert in Chile, are among the world’s driest. 

Innovators are rising to the challenge in several ways. Some are exploring alternative ways of extracting lithium, while others are developing batteries that avoid using lithium (and other minerals with a high environmental impact) altogether. But given the current prevalence of LIBs, and the early stage of alternative technologies, one of the biggest things we can do to mitigate their impact is to invest in effective recycling technologies. 

Canadian company Li-Cycle has developed a two-step recycling process that enables the recovery of critical materials, including lithium, cobalt, and nickel. 

The first step of the process involves breaking down the end-of-life batteries into their component parts. The second step consists of refining the materials into different product streams which can then be used for new batteries.

Unlike other battery recycling processes, which require high temperatures, Li-Cycle’s patented approach relies on chemistry, using unique ‘hydrometallurgical’ technology that is more environmentally friendly. Moreover, traditional approaches to battery recycling typically result in the loss of up to half of the useful recycled material in comparison to Li-Cycle’s 95 per cent recovery rate. The Li-Cycle system can handle batteries of various sizes used for different applications.

The company has recently announced that it plans to expand its operations into Europe. The company will open spoke facilities in Norway and Germany in the first half of 2023, with an aim to recycle 65,000 tonnes of batteries annually by the end of that year. This expansion will help Li-Cycle to meet the growing demand for its services as the world moves toward a more sustainable future.

Other innovations spotted by Sporingwise that re-use end-of-life batteries include e-rickshaws that give a second life to electric vehicle batteries, a startup re-purposing used electric vehicle batteries into home energy storage systems, and technology that yields pure graphite from used lithium-ion batteries.

Written By: Katrina Lane

Website: li-cycle.com

Contact: li-cycle.com/contact

Reference