Can You Really Grow a City? The Truth About Mycelium
CategoriesArchitecture

Can You Really Grow a City? The Truth About Mycelium

Architizer’s 12th Annual A+Awards are officially underway! Sign up for key program updates and prepare your submission ahead of the Final Entry Deadline on January 26th.  

The architecture industry is looking for alternatives to concrete, the world’s most widely used building material. Cheap, versatile and strong, concrete is one of the most revolutionary substances in history. It would not be an exaggeration to say that cities as we know them today would not have been possible without reinforced concrete. However, the carbon footprint of cement production is enormous, accounting for 8% of global emissions each year. For comparison, this is a far higher share than the aviation industry, which is responsible for 2% of emissions. It is not hard to see why architects are interested in moving away from concrete — and quickly.

Among the alternatives to concrete being researched, a material derived from fungus called mycelium is by far the most romantic. In 2024, everyone knows someone obsessed with mushrooms and their alleged nutritional, medicinal and psychotropic virtues. For these types, it just makes sense, in an artistic or spiritual way, that fungi will rescue us from the climate crisis we’ve created.

I mean this with no condescension whatsoever: fungi are fascinating and inspiring. They have also been around far longer than animals and plants. Personally, I adore the idea of a future world where we live in homes made of mycelium. There is an undeniable Richard Scarry-esque charm to the image of living inside a mushroom.

Close up of mycelium network. Rob HilleMycelium RH (3)CC BY-SA 3.0

So what exactly is mycelium? Briefly, mycelium is the root-like structure of a fungus. It functions both as a root system as we would think of it — that is, a fungus transports nutrients through its mycelium — but also as a kind of giant brain. The mycelium of a fungal system sends electrical signals to different parts of the organism to warn of changes in the environment.

In some cases, a mycelium system can span thousands of acres, as is the case in Oregon’s Malheur National Forest. Individual mushrooms are simply the “fruiting bodies” of this vast organism, which is estimated to be at least 2,400 years old.

Mycelium is widely used in the world of packaging, with companies like Ikea and Dell using it instead of polystyrene, which is not biodegradable. The process for creating mycelium packaging is the same as for creating mycelium bricks, which are used for building.

First, organic waste is cleaned and then combined with mycelium, which grows around the waste and digests the material. (Remember: fungi eat their nutrients like we do. They are actually more closely related to animals than plants biologically). Then, the remaining material is placed into a mould. It continues to grow to fit the shape of the mould, and when it is dried, voila! A mycelium brick is born. This process is quick, taking only five days.

The Growing Pavilion by Biobased Creations, Eindhoven, Netherlands, 2019. Finalist, 2021 A+Awards, Architecture +New Materials

Certified Energy, an environmental consulting firm in Australia, aptly describes the virtues of mycelium construction: “Through bio fabrication a carbon neutral building process can be achieved eliminating such products as artificial insulation used in walls, MDF and other non load bearing structures.” In addition, “Mycelium products can also provide other benefits such as termite proofing, with products being created which attract termites but when eaten cause a fungus spore to activate within the termite killing it and creating a fungus whose spores repel other termites.”

Stunningly, Certified Energy explains that “relative to its weight a mycelium brick is stronger than concrete with a cubic meter of mycelium brick weighing 43 kilograms and a cubic meter of concrete weighing 2400 kilograms” (95 pounds versus 5,290 pounds). Unfortunately, this is not the most relevant metric. By volume, rather than weight, mycelium has nowhere near the compressive strength of concrete, clocking in at 30 pounds per square inch versus 4000 pounds per square inch for concrete. These bricks will not be used to build a home near you in the near future.

Hy-Fi by The Living, New York City, New York 

And yet, there is still something inspiring about mycelium’s capacities. In 2014, The Living New York exhibited a tower called Hy-Fi in front of MoMA PS1. Standing 43 feet (13 meters) tall, the structure was made of 10,000 compostable mycelium bricks. As mycelium bricks are created through the process of organic decomposition, the manufacture of the bricks for this tower resulted in fertile soil as an output, which is obviously vastly preferable to the carbon released in cement production. Indeed, The Living New York donated this soil to local community gardens.

Another incredible feature of mycelium bricks: they are technically still alive when they are used. This allows them to bond to each other without mortar and even heal themselves when cracks appear. Can you imagine? A crack in your wall healing on its own.

Mycelium is certainly cool, and shows promise as a material for insulation, furniture, and the construction of temporary structures. However, it is unfortunately not a realistic alternative to concrete or even wood. Researchers should consider the way mycelium elements can complement sustainable architecture rather than pitching it as a building material on its own.

Cover Image: Mushrooms by Bernard Spragg. CC BY-SA 3.0 via Negative Space

Architizer’s 12th Annual A+Awards are officially underway! Sign up for key program updates and prepare your submission ahead of the Final Entry Deadline on January 26th.  

Reference

Photo of plastic bottles
CategoriesSustainable News

We need to design for human behaviour to get rid of single-use plastics

Packaging designs aimed at boosting recycling rates and reducing the prevalence of single-use plastics are destined to fail unless they help to change people’s behaviour, writes Matt Millington.


No one is particularly happy when they find out there’s plastic waste on Mount Everest, or in the deep oceans, or in human blood. It’s not controversial to say that we need to stop churning the stuff out and throwing it away.

One way for businesses to tackle single-use plastics is to design their packaging to be reusable, but so far efforts have not succeeded at scale.

For example, reusable McDonald’s cups are only getting a 40 per cent return rate from customers in Germany, despite consumers paying a €2 deposit. When Starbucks trialled reusable cups in the closed environment of its Seattle HQ, where returning them is presumably straightforward, the return rate still didn’t exceed 80 per cent.

We weren’t exactly succumbing to dehydration on the streets before coffee shops designed takeaway cups

It’s not that we don’t care: research suggests consumer motivation towards environmentally positive behaviour is high. It’s that as a society we have developed an expectation of convenience: to have what we want, when we want it, without any consequences.

This is entirely unreasonable – we weren’t exactly succumbing to dehydration on the streets before coffee shops designed takeaway cups – but while it persists, consumers are very unlikely to switch to reusable alternatives if it puts them out. And without a high return-and-reuse rate, reusable packaging is usually worse for the environment, owing to the much higher quantities of plastic involved.

This is why we need to design for human behaviour if we’re ever to get rid of single-use plastics. You cannot control what people will do with packaging once it leaves your premises, but you can influence them by factoring behavioural psychology into the design of the packaging itself.

The first step is understanding how consumers interact with the pack, throughout its lifecycle. Where are they and what are they doing when they open it? What’s their headspace? How about when they’re finished with it? There’s a big difference between how someone interacts with a reusable plate after a meal in a cafeteria, and how they interact with the reusable salad bowl they’re gobbling from on the lunchtime rush back to the office.

Then it’s about understanding the levers you can pull to nudge people towards more planet-positive decisions. Behavioural psychology shows there are three factors that work together to drive behavioural change: increasing consumer motivation to recycle or reuse, raising their ability to do so, and providing a trigger to remind them.

Take plastic bags. While usage of single-use bags has dramatically decreased in the UK since legislation requiring retailers to charge for them came into force in 2015, reusable alternatives have had mixed success. According to a report by the Environmental Investigation Agency and Greenpeace, 57 “bags for life” were sold for each household in the country in 2019 – more than one a week.

It’s possible to go too far in signalling that a pack isn’t disposable

Online grocer Ocado uses recyclable bags instead, but it has had success in achieving returns because it pulls all three behavioural psychology levers. Consumers are happy to receive bonus reward points for each bag they give back (motivation).

The bags are straightforward to return and customers know not to throw them away because of their clear messaging and distinct off-grey colour, which follows from not using harmful bleaching agents (ability). And because the driver usually asks for old bags after delivery, they’re unlikely to forget (trigger).

Ability is the key consideration. If you wanted to return the packaging from a takeaway burger meal, it would mean washing and then carrying around a bulky burger box, fries box and cup, and either making a special trip to the restaurant or waiting until you happen upon another branch.

New Zealand start-up FOLDPROJECT has done some interesting work here, trying to make boxes more portable. It’s a simple idea: a machine-washable lunch kit that packs down to a flat sheet. The challenge is that because it is so minimal, its form and material make it look disposable.

One way to ensure a reusable design communicates its intended purpose is through material choice. For example, using explicitly post-consumer recycled plastic could be a visual shorthand to communicate a planet-positive intent, as could using longer-lasting materials like glass or stoneware.

Interestingly, it’s possible to go too far in signalling that a pack isn’t disposable. When McDonald’s introduced reusable packaging in its restaurants in France, it found the packaging kept disappearing, only to reappear on eBay. It looked reusable and on-brand, but was too novel for some, defeating the object.

So long as we have bins on every street that lead directly to landfill, we are going to struggle

Businesses cannot just switch to reusable packaging – even when intelligently designed – and expect results. So long as we have bins on every street that lead directly to landfill we are going to struggle.

We therefore need to think beyond just designing the packaging to be sustainable, and think about how we design systems to be sustainable. In a circular economy that means service and experience design, packaging, industrial design, marketing, data, artificial intelligence and logistics all working hand-in-hand to keep the pack “in the loop”. It will therefore need to be an ecosystem effort.

We’re already seeing innovations that can help make reuse and return viable in the age of convenience. For example, when is a bin not a bin? When it’s a Bjarke Ingels Group-designed TURN system – a remote, digitally connected, RFID-enabled, packaging-asset reclaim and sorting network, which rejects unwanted trash.

Similarly, we’re seeing nudge messaging along the pack journey, and even packs that communicate their status themselves. Scottish start-up Insignia has designed colour-changing labels that reveal how long a pack has been exposed to the environment. Imagine taking this further, with reusable packaging telling you what to do with it, and offering prompts or rewards to encourage you.

Reusability hasn’t hit scale yet, but we should be optimistic that it can, not least because we’ve been there before. Milk deliveries were once the norm, with bottles returned, not discarded.

There’s no reason that we can’t get back to this more sustainable approach across the board, without having to endure too much inconvenience. All that’s required is a little ingenuity, and a lot of collaboration.

The photography is by Jas Min via Unsplash.

Matt Millington is a sustainable-design strategist at PA Consulting.

Dezeen In Depth
If you enjoy reading Dezeen’s interviews, opinions and features, subscribe to Dezeen In Depth. Sent on the last Friday of each month, this newsletter provides a single place to read about the design and architecture stories behind the headlines.

Reference

Renco lego building
CategoriesArchitecture

Dezeen Agenda features apartment building made from Lego-like blocks

Renco lego building

The latest edition of our weekly Dezeen Agenda newsletter features an apartment block in California constructed like a “real-life Lego-kit”. Subscribe to Dezeen Agenda now.

Florida-based manufacturer Renco has completed a Palm Springs apartment complex that was made using Lego-like blocks made of repurposed materials and designed by architecture studio Arquitectonica.

Constructed from a composite blend of glass fibres, resin, and stone, the blocks were designed to be stronger, less energy-intensive and more affordable than conventional materials.

Portrait of Lesley LokkoPortrait of Lesley Lokko
“Revolutionary force” Lesley Lokko wins 2024 RIBA Royal Gold Medal

This week’s newsletter also featured Ghanaian-Scottish architect Lesley Lokko being named the recipient of this year’s RIBA Royal Gold Medal, the reveal of plans and the architect for this year’s Serpentine Pavilion and a “first aid kit” for furniture designed by Yalan Dan.

Dezeen Agenda

Dezeen Agenda is a curated newsletter sent every Tuesday containing the most important news highlights from Dezeen. Read the latest edition of Dezeen Agenda or subscribe here.

You can also subscribe to our other newsletters; Dezeen Debate is sent every Thursday and features the hottest reader comments and most-debated stories, Dezeen Daily is our daily bulletin that contains every story published in the preceding 24 hours and Dezeen In Depth is sent on the last Friday of every month and delves deeper into the major stories shaping architecture and design. 

Reference

From Float Glass to OLEDs: How Recent Advancements in Glass Technology Are Reshaping 21st Century Design
CategoriesArchitecture

From Float Glass to OLEDs: How Recent Advancements in Glass Technology Are Reshaping 21st Century Design

Architizer’s A+Product Awards celebrate the manufacturers at the forefront of material innovation. If your brand is innovating in product design for architects, consider entering today:

Enter the A+Product Awards

It might be hard to believe in today’s see-through society, but glass was once a scarce resource used sparingly in architecture. In the early years, glass was a medium for divine storytelling. The Sainte-Chapelle in Paris, a stunning structure completed in 1248, illustrates 1,113 scenes from the Old and New Testaments across a massive surface area of 6,888 square feet (640 square meters) of stained glass windows. Although beautiful, the windows were not decorative. They were an educational tool to teach religion to an illiterate population — 13th-century marketing at its very best.

By 1851, Joseph Paxton had designed and built The Crystal Palace for The Great Exhibition in London. With its vast expanse of plate glass panels and cast iron framework, the structure redefined the possibilities of architecture and design. As time and technology progressed, the float glass process (pouring the molten glass from a furnace into a chamber that contains a bed of molten tin), conceived by Sir Alastair Pilkington in 1959, was groundbreaking. It enabled the creation of large, uniform glass sheets that were less time-consuming to manufacture and more stable. The new process allowed glass to be seen as a structural element rather than a decorative addition.

Double-Curved Channel Glass Walls by Bendheim. Finalist, 2022 A+Product Awards, Best of the Year, Architectural Design 

By the time Modernism came into its own, a new vision of glazing was well underway — influenced mainly by the ever-experimental Ludwig Mies van der Rohe. Mies’s philosophy of “less is more” led to a minimalist aesthetic where glazing allowed architects to move away from the solid, enclosed walls of traditional design to a language of openness and fluidity. This work laid the foundation for the modern skyscraper and encouraged a shift towards integrating buildings with their environment, emphasizing nature and light. It was a pinnacle time for glazing advancement, and now, 100 years on, we are entering a new phase of glazing innovation.

The market for advanced glazing technologies is robust and expanding. Industry analyses, such as those conducted by Grand View Research, indicate that the global smart glass market, valued at USD 4.22 billion in 2020, is anticipated to grow at a compound annual growth rate (CAGR) of 6.8% from 2021 to 2028. This growth trajectory is propelled by the escalating demand for energy-efficient and technologically sophisticated building solutions. The market expansion reflects a broader architectural trend toward buildings that are not just structures but adaptive, energy-efficient systems.

eyrise i350 Invisible Privacy Glazing by Merck KGaA. Jury Winner, 2022 A+Product Awards, Best of the Year, Health & Wellness 

Smart glass technologies, like electrochromic glass, are at the forefront of such innovation. Using a minimal electrical charge, electrochromic glass can transition between transparent and opaque states, offering dynamic control over both natural lighting and privacy while significantly impacting energy efficiency. For instance, in its opaque state, electrochromic glass can block solar radiation, substantially reducing the need for air conditioning in buildings. According to a U.S. Department of Energy report, smart windows have the potential to save up to 20% in annual energy costs, marking a substantial stride in building energy efficiency through one of the most used materials in construction.

Enter the A+Product Awards

Sustainability is one of the key drivers in the evolution of glazing technologies, with an emphasis on integrating recycled materials into the production process being a priority. The use of cullet, or recycled glass, in glass manufacturing has been bolstered by new sorting and cleaning technologies that efficiently prepare the recycled glass for melting, causing less waste and using less energy.

SunGuard SNR 50 coated glass by Guardian Glass. Popular Choice Winner, 2022 A+Product Awards, Façades & Openings, Glass & Glazing

Thanks to these new recycling techniques, coatings derived from recycled glass are being used more frequently. Low-emissivity (Low-E) coatings featuring microscopic layers of metallic oxides are becoming ever more popular. These glasses effectively minimize thermal transmittance while maintaining high levels of light transmittance. As do solar control coatings that selectively reflect infrared solar radiation, reducing heat gain and glare. In the context of urban design, these technologies lower heat absorption, thereby lowering ambient temperatures throughout our warming cities and reducing the urban heat island effect, a growing concern in densely populated cities.

Yet it’s not all about sustainability and climate. Multifunctional glazing solutions are reshaping the role of glass in architecture. These advanced solutions, integrating features like LED displays and touch-screen capabilities, are transforming windows from passive elements into interactive, multifaceted platforms. This transformation is underpinned by advances in optoelectronic engineering, enabling the integration of Organic Light Emitting Diodes (OLEDs) directly onto glass surfaces. These OLEDs provide energy-efficient, high-quality displays. Touch-screen functionality is achieved through the application of transparent conductive oxides (TCOs), which offer capacitive touch recognition without compromising the transparency of the glass.

Experts in the industry are highly optimistic about the potential of such technologies. With a simple touch, users can control lighting and privacy and have immediate access to information, making buildings more functional and adaptable.

Enter the A+Product Awards

Digital display glass provides a platform for real-time information dissemination; things like weather updates, service information, local points of interest, or even emergency alerts can be shown on the building itself. From a commercial perspective, digital display glass holds great potential, with it being used for advertising or showcasing products, offering business opportunities, and reaching broader audiences. Although advertising is a popular function, architects and designers have an opportunity to utilize this technology as a space for artistic expression, integrating digital art, animations, or dynamic visuals that can contribute to the aesthetic language of buildings.

Similarly, the integration of augmented reality (AR) and interactive features in smart glass technologies are pushing digital imaging and sensor technology. AR functionalities can be embedded in glass through the use of micro-projectors and transparent photovoltaic cells, allowing buildings to communicate and engage with occupants in unprecedented. This integration signifies a leap in the application of photonics and digital interactivity in architectural design, pointing towards a future where buildings offer not just shelter but dynamic, responsive environments.

In educational or public spaces, digital display glass and AR features can be used as a dynamic learning tool, displaying educational content, interactive exhibits, or historical information, enriching the learning experience and promoting knowledge while providing opportunities to increase accessibility in buildings, ensuring that everyone can benefit from the technology in a surreal revisiting of glazing’s original purpose from the 13th Century.

In essence, like much of our industry, glazing is witnessing a revolution marked by innovation, a commitment to sustainability, and a focus on enhancing human experiences. The enthusiastic embrace of these technologies by industry experts and leading architects underscores a shared commitment to innovating for a better, more sustainable, and aesthetically enriching future.

Enter the A+Product Awards

Architizer’s A+Product Awards celebrate the manufacturers at the forefront of material innovation. If your brand is innovating in product design for architects, consider entering today.

Reference

Photo of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomass
CategoriesSustainable News

CornWall gives discarded corn cobs new life as interior tiles

Materials companies Circular Matters and StoneCycling have used corn cobs – one of the world’s most plentiful agricultural waste materials – to make interior cladding that is biodegradable and almost entirely bio-based.

Available in the form of tiles and sheets, CornWall is intended as a more sustainable alternative to ceramic interior wall tiles or plastic laminate.

The material is derived from more than 99 per cent renewable, biological sources, is created at low temperatures using mainly solar power and emits less carbon dioxide in its production than was captured by the corn as it grew, the manufacturers claim.

Photo of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomassPhoto of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomass
CornWall is an interior cladding material that is 99 per cent bio-based

To give the products a long lifespan, Circular Matters and StoneCycling have produced the tiles with a mechanical fixing system, so they can be demounted and reused or given back to the company for cleaning and recycling.

The technology behind CornWall was invented by Circular Matters – a start-up spun out of a lab at Belgium’s KU Leuven University, where founder Pieter Dondeyne and his team found a way to process plants to enhance their natural biopolymers and create durable materials.

The team then partnered with Dutch company StoneCycling to channel their technology into a product.

Photo of a person, close-up on their hands, holding a small pile of bare corn cobs, their kernels removedPhoto of a person, close-up on their hands, holding a small pile of bare corn cobs, their kernels removed
Corn cobs make up most of the composition of the tiles

StoneCycling co-founder Ward Massa told Dezeen that the focus on corn came because it is one of the most grown crops on the planet and its waste is abundant.

“What happens when you grow corn for human consumption is when it’s ready to harvest, you take off the corn and the corn cob is a leftover material because it doesn’t hold any nutritious value,” he said.

“Usually, that means that these corn cobs remain on the field and rot away, or they are burned as biomass to generate energy,” he continued. “In both cases, you release the carbon that was stored in those fibres – it rots away and it gets released, or you burn it and it gets released.”

With CornWall, the carbon is locked away until the tiles reach the end of their life and are left to decompose.

The production process begins with the discarded cobs being collected, dried and shredded into biomass.

This material is then mixed with other agricultural waste, binders and pigments and pressed into a plate material at a relatively low heat of 120 to 150 degrees. As a final step, the tiles are given a thin coating for water resistance.

All of the ingredients are derived from biomass apart from the pigment, which accounts for the 0.5 per cent of the product that is not bio-based – a very low percentage in a field where even products containing small amounts of materials of organic origin are sometimes labelled as bio-based.

Photo of a person at a distance standing in a huge warehouse of bare corn cobs piled high into hillsPhoto of a person at a distance standing in a huge warehouse of bare corn cobs piled high into hills
The agricultural waste material was chosen because of its abundance

According to Massa, the companies were able to keep the product pure by focusing on interior wall applications only.

“If you want to create a product that can also be used on the exterior or as a flooring or in the shower, then you have to start adding chemicals to bind it, to make it more water resistant and stuff like that,” he said.

“We chose to start with this application because it’s relatively easy and the binder and the product is nothing else than the natural polymers that are already part of this biomass. Because of adding heat and pressure, these polymers are activated and bind together.”

Photo of four objects in flatlay — a full corn cob on the left, followed by a bare corn cob, then a small tray of shredded biomass, then a CornWall tilePhoto of four objects in flatlay — a full corn cob on the left, followed by a bare corn cob, then a small tray of shredded biomass, then a CornWall tile
The corn cobs are dried and shredded before being pressed into tiles

CornWall is also biodegradable according to official standards, with Massa saying it could be buried in a field and disintegrate in a couple of months.

The only thing that would remain is the water-resistant coating, which is not biodegradable but makes up less than 0,001 per cent of the total product meaning it does not affect its biodegradability overall, according to Massa.

“Unfortunately there are no 100 per cent biodegradable coatings on the market yet,” he said. “We’re working with our suppliers on this but it’ll take more time.”

Instead, the intent is to keep the product in use for as long as possible.

The companies wants to target retail and hospitality chains that frequently open and close locations – Starbucks is an example Massa gives – and work with them to make sure the tiles stay in a closed loop of material reuse.

He also believes CornWall offers good options for these kinds of businesses in the design stage, as it can be ordered in custom colours and embossed patterns to complement their branding.

Photo of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomassPhoto of seven colours of CornWall tile in flatlay, ranging from a warm beige to a a muted reddish brown and a dark greenish grey. The tiles are arranged beside a bare corn cob, a full corn cob and a small bowl of shredded biomass
The tiles are available in a base range of six colours

“As far as we are concerned, this will become the new retail material,” said Massa. “Especially in those places in retail where they now use materials that are either glued or take a lot more energy to make or create a lot of waste when the shops are being renovated or demolished.”

“Production can also be done regionally because you don’t need a very complicated factory for it.”

CornWall is currently available in a base range of six colours and two sizes, developed in collaboration with Dutch design practice Studio Nina van Bart. Massa says additional textures will soon be added to the line.

CornWall is the fourth product from StoneCycling. The first was the WasteBasedBrick, which is made from 60 per cent waste and was used by Dutch architects Nina Aalbers and Ferry in ‘t Veld of Architectuur Maken to build their own house in Rotterdam.

Reference

Reef Rocket by Mary Lempres
CategoriesSustainable News

Reef Rocket is a bio-cement reef grown from plant enzymes

Industrial designer Mary Lempres has created a bio-cement structure developed to mimic naturally occurring oyster reefs that tackle coastal flooding, filter seawater and promote biodiversity.

Called Reef Rocket, the structure comprises a duo of bio-cement modules with ridged surfaces that can be stacked in two directions and create a rocket-like shape when assembled.

Reef Rocket by Mary LempresReef Rocket by Mary Lempres
Reef Rocket is a bio-cement structure formed from two modules

Norwegian-American designer Lempres drew on biomimicry for the project, a practice that looks to nature to solve human design challenges.

The ridged modules were created to be placed underwater and emulate coastal oyster reefs, which naturally filter algae from seawater as well as attract and provide shelter for other aquatic organisms.

Bio-cement man-made oyster reefBio-cement man-made oyster reef
Mary Lempres designed Reef Rocket to emulate oyster reefs

Oyster reefs also dissipate wave energy, mitigate storm surges and manage eroding coastlines, explained the designer.

Lempres collaborated with bio-geotechnical specialist Ahmed Miftah to develop a method for growing plant-derived cement that makes up the modules, which she described as “similar to the irrigation systems required for growing a plant”.

Close-up of textured oyster reef-like structureClose-up of textured oyster reef-like structure
The designer drew on biomimicry for the project

The pair poured a bio-based, non-toxic solution containing a crude extract from globally grown plants over crushed aggregate.

Sourced in New York City, the aggregate was created from crushed glass and oyster shells salvaged from local restaurants and New York Harbour.

“The packed substrate grows similarly to a plant,” Lempres told Dezeen.

Oysters attached to the structureOysters attached to the structure
Reef Rocket was created to attract oysters

Saturated for three to nine days, the substance becomes natural concrete after the extracted biocatalyst causes minerals to form “mineral bridges” between the glass and shell waste.

“The resulting product is water-resistant, durable and comparable with standard concrete containing the same amount of aggregate,” explained the designer.

Shells and blocks of bio-cementShells and blocks of bio-cement
Lempres created the bio-cement with bio-geotechnical specialist Ahmed Miftah

“It can be grown in any environment without heat or otherwise burning fossil fuels and is derived from waste products, making it an affordable and scalable alternative to cement,” she continued.

“Bio-concrete is chemically identical to the material oysters produce to grow their reefs. The key difference is the bio-concrete we’ve developed grows in just several days, while oyster reefs take millennia to grow.”

This process closely mimics the natural processes that occur when oyster shells and coral reefs are grown, according to the designer.

“I was inspired by the ability of this reef-growing material to withstand extreme wave energy and corrosive saltwater,” she said.

Bio-cement structure in New York CityBio-cement structure in New York City
The structure was designed to be placed underwater

When creating the modules, Lempres and her team made “hundreds” of prototypes.

Eventually, they settled on prefabricated moulds, which the bio-cement can be packed into and set – “like sand” – without the need for heat or chemicals.

Bio-cement samplesBio-cement samples
Lempres and her team created “hundreds” of prototypes

Reef Rocket was deliberately developed to be small in size, lightweight and easy to assemble, making the design accessible to as many people as possible, according to the designer.

“Nature has the incredible ability to grow intricate and durable material, like shells and coral, without polluting its surrounding environment,” said Lempres.

“Reef Rocket harnesses the natural process of growing durable minerals to re-grow vital reef structures, benefiting humans and our ecology from the worsening effects of climate change,” she added.

“This paves the way for a future where hard and durable material can be grown like a crop, regenerating waste rather than polluting our environment.”

Previously, US design workshop Objects and Ideograms conducted a research project that involves 3D printing with calcium carbonate to create sustainable underwater “houses” for coral reefs and marine life to grow. Chinese materials company Yi Design developed a porous brick made from recycled ceramic waste that could be used to prevent flooding in urban areas.

The photography is courtesy of Mary Lempres



Reference

Australia moves to ban engineered stone due to silicosis danger
CategoriesInterior Design

Australia bans engineered stone due to silicosis risk

Australia has become the first country in the world to ban engineered stone, following rising cases of silicosis among workers who handle the material.

The ban was agreed at a meeting of Australian federal and state workplace ministers on Wednesday, and will come into place across the country from 1 July 2024.

The ban targets engineered stone, also known as agglomerated stone – a type of material made by mixing crushed stone with a resin binder.

“This is a dangerous product”

While it is valued as a durable and affordable alternative to natural stone for kitchen benchtops, the material can be dangerous while being cut because it releases a fine silica dust into the air.

Australia has recorded rising cases of the lung disease silicosis in stonemasons who have handled the product, leading it to be dubbed “the asbestos of the 2020s” by union leader Zach Smith.

“This is a dangerous product that’s known to cause the potentially fatal disease silicosis, and it has no place in our workplaces,” said Queensland industrial relations minister Grace Grace in a statement following the meeting.

“The rate of silicosis illness in Australia for those working with engineered stone is unacceptable,” said her Western Australian counterpart Simone McGurk. “This prohibition will ensure future generations of workers are protected from silicosis associated with working with engineered stone.”

Ban follows report finding no safe level of silica in engineered stone

The move comes nine months after an investigation by three Australian news outlets accused supplier Caesarstone of not doing enough to warn people of the dangers of working with the material and the country’s construction union launched a campaign calling for the ban.

A subsequent report by the national policy body Safe Work Australia found that engineered stone workers were significantly over-represented in silicosis cases and were being diagnosed with the disease at much younger ages than workers from other industries, with most being under the age of 35.

It also found that the risk from engineered stone was distinct from that of natural stone due to the material’s physical and chemical composition, and that this was likely contributing to more rapid and severe disease.

The report concluded that no level of silica was safe in engineered stone and that the material should be prohibited in its entirety.

Silicosis is caused by tiny particles of silica becoming embedded in the lining of the lungs and manifests in symptoms such as shortness of breath, cough, weakness and fatigue.

The condition is life-altering and potentially fatal, with many formerly healthy young sufferers describing being unable to work or play with their kids.

Caesarstone commits to supplying Australia with “alternative products”

In response to news of the ban, Caesarstone commented that while it disagreed with the decision, it is taking the necessary steps to ensure supply of alternative materials to Australian consumers.

“The Caesarstone brand is well known in Australia and its products have earned tremendous success over the years,” said Caesarstone CEO Yos Shiran. “We are already taking steps to supply our Australian market with alternative products while maintaining our strong market presence.”

It has previously argued that its material is safe if handled correctly and that the silicosis danger was the fault of employers and work safety bodies.

Other companies including Ikea and Bunnings had already committed to phasing out the material in the Australian market.

The ban will apply to the manufacturing, supplying, processing and installing of engineered stone but not its removal, repair, disposal or minor modifications.

Australia’s workplace ministers will meet again in March 2024 to finalise details of the ban, including the transition period for contracts that have already been implemented and the precise definition of engineered stone.

The country’s Model Work Health and Safety Regulations currently exclude concrete and cement products, bricks and pavers, porcelain, ceramic tiles, roof tiles, grout, mortar and render, and plasterboard from the definition of engineered stone, but ministers have indicated that additional products would be added to the exemptions.

This may allow future engineered stone products to be exempted from the ban if there is “compelling evidence” that they can be used safely.

Reference

kengo kuma wakuni shoten
CategoriesArchitecture

kengo kuma’s tokyo café reuses shrine materials for origami facade

kengo kuma revives traditional craft and materials

 

This so-called Wakuni Shoten café is set to open in In the heart of Higashimurayama City, Tokyo with architecture by Japanese icon Kengo Kuma. Recognized at once by its textural, patterned facade, the architecture expresses a contemporary reading of tradition. Its materials have been repurposed from a Shinto shrine, and have been reassembled with influence from the art of origami. Thus, the project is more than a café, but a celebration of community, sustainability, and the enduring spirit of Japanese craftsmanship. With its architecture now complete, the Wakuni Shoten café will open in January 2024.

kengo kuma wakuni shotenimages courtesy Kengo Kuma & Associates

 

 

learning from the heritage of tokyo

 

The Wakuni Shoten café is the result of a collaboration between Kengo Kuma & Associates, Okaniwa Construction Co., and Tomokazu Uchino, head of Uchino Sheet Metal. The space was born from a deep love for Uchino’s childhood home, the Aoba shopping district. Witnessing the district’s gradual decline, the team sought to breathe new life into the area while celebrating its rich heritage. The collaboration with Kengo Kuma and his design team proved to be the perfect marriage of vision and expertise, as the Japanese architect is known for his work with salvaged materials.kengo kuma reuses shinto shrine materials for origami facade of tokyo café

 

 

the folded facade in green and blue

 

The defining feature of Kengo Kuma’s Wakuni Shoten café is undoubtedly its exterior, a patterned composition of seven hundred patinated bronze plates each sourced from the roof of Hayatani Shrine in Hiroshima Prefecture. Rather than discarding these disused plates, Tomokazu Uchino and his team of skilled craftsmen painstakingly reshaped and repurposed them, imbuing them with a new lease on life. The result is a mesmerizing facade that shimmers with a spectrum of greens and blues.

kengo kuma wakuni shoten

 

 

The café’s interior walls are finished in a stark black plaster, serving as a backdrop for brass accents, including lampshades, sinks, baseboards, and kitchen elements. Even the outdoor chairs, designed by Kengo Kuma and crafted from salvaged seats of the former National Stadium, echo this theme of reuse. Sustainability is woven into the very fabric of the project. The decision to reuse the cafe’s original 52-year-old framework honors the past while minimizing environmental impact. By reinforcing the foundation and strategically integrating new wood, the team has revived the derelict structure, demonstrating a respect for both the environment and the district’s history.

kengo kuma wakuni shoten

 

 

project info:

 

project title: Wakuni Shoten Café | @wakuni_cafe

location: Aoba Shopping District, Higashimurayama City, Tokyo, Japan

architecture: Kengo Kuma | @kkaa_official

materials collaborator: Tomokazu Uchino | @tomokazu_uchino, @uchinobankin

design, construction: Okaniwa Construction Co. | @okaniwastyle

client: Wakuni Shoten | @wakunishoten

opening: January 2024



Reference

Dekton Ukiyo: Cosentino’s New Material Collection Celebrates the Aesthetic Wisdom of Japan
CategoriesArchitecture

Dekton Ukiyo: Cosentino’s New Material Collection Celebrates the Aesthetic Wisdom of Japan

Most people who love design also love Japan. In fact, it is impossible to truly appreciate the modern history of Western art and design without recognizing Japan’s influence. From the woodblock prints of Hiroshige that inspired Van Gogh to the Zen tea rooms that laid the foundation for minimalist architecture, Japanese aesthetics paved the way for modernism.

It is not just that Japanese design is beautiful. The nation has a long tradition of thinking carefully about aesthetics, and how the contemplation of beauty contributes to human flourishing. Consider the concept of wabi-sabi, or the art of imperfection, that was recently explored in an Architzer op-ed. Centuries before American architects lamented the homogeneity of the clean and orderly suburbs, Japanese philosophers recognized the paradoxical truth about beauty: that it requires flaws.

Dekton Ukiyo NACRE. Image courtesy Cosentino

It is this aspect of Japanese aesthetics — the theoretical side — that most inspired world-renowned interior designer Claudia Afshar in the development of her new collaborative collection with Cosentino, Ukiyo. The tagline for the series is “The Inner Texture,” which speaks to the Japanese understanding of interior design as an art that evokes a mental atmosphere of inner serenity. In the Japanese tradition, beauty and well-being go hand in hand.

The collaboration consists of a series of new patterns and textures for Cosentino’s versatile Dekton surfaces, a product we love and have profiled many times in the past. Scratch resistant, stain resistant, and able to endure the elements, Dekton is the surface of choice for designers looking for a material that is both resilient and visually alluring. The introduction of Dekton into the marketplace in 2013 completely upended the old conventional wisdom that natural materials are more beautiful than composites.

With Ukiyo, Claudia Afshar showcases the extraordinary potential of Dekton. Most Westerners recognize the term ukiyo as referring to a genre of woodblock prints that flourished in the 19th century, epitomized by the work of artists like Hokusai and Hiroshige. But in the promotional materials for this new collection, Afshar and Cosentino have chosen to emphasize the literal meaning of this term, listing the dictionary definition on the top of the collaboration webpage: “[u-key-yo], Japanese, (n). Living in the moment, detached from the bothers of life. ‘The floating world.’” The idea is drawn from Zen. It means that paradise is always at hand; all it takes is a choice to live in the moment.

Dekton Ukiyo KRETA. Image courtesy Cosentino

In a recent webinar hosted by Architizer, Cosentino’s Lauren Dron quoted Coco Chanel’s statement that “An interior is the natural projection of the soul”, emphasizing the depth of the question architects and designers must ask every time they take on a project. “Meaningful design in the built environment continues to be rooted in our minds and in our emotions,” she declared. “Design is a reflection and enhancement of the human experience.”

This second part — enhancement  — is key, and it is the place where architects can really have an impact on the world. In a social environment dominated by stress, conflict, and speed, architects can create environments of serenity and calm. They can remind people that “the floating world” is alway at hand if one is willing to adjust their perspective.

This, then, is the noble aim of Ukiyo, which features textures and colors that are simple, yet rich. As lush as any natural stone, and as meditative as a pool of still water, these surfaces bring serenity into all sorts of interiors, from domestic to commercial. Each Dekton color features the same delicate ribbed texture, which is reminiscent of the wood slats one often finds in Japanese homes. The texture also evokes the delicate patterns one finds raked into the sands of Zen gardens.

There are two different options when it comes to the size and spacing of the grooves. Ukiyo GV2 is wider, with 25 mm slats and grooves that are 5 mm wide and 3 mm deep. GV3 is finer, with 11 mm slats and grooves that are 4 mm wide and 4 mm deep.

Dekton Ukiyo BROMO. Image courtesy Cosentino

BROMO is the first color in the series. It is described as “a dark gray shade inspired by slate featuring subtle faded graphics and a carefully crafted texture with a natural aesthetic.” The graphics are really key here. The material is actually deeper and richer than slate, yet it has the same soothing matte finish, exuding sophistication.

The next color, KRETA, is inspired by concrete, a material that retains modernist cache despite its ubiquity. Some of the most lyrical architecture ever made with raw concrete was created by Japanese architects, including Tadao Ando. Cosentino notes that KRETA can “create lighter or darker spaces.” In this way, it  plays off the light conditions in its environment, just like real concrete — a true neutral.

NACRE and REM are both shades of cream or beige. NACRE is the lighter of the two, and can even be considered an off-white. It is a great choice for designers looking for a minimalist finish but wary of stark brightness. This tone is both light and warm. REM has a similar impact but is marked by more dramatic veining patterns. There is a luxe quality here that is perfect for commercial interiors.

Dekton Ukiyo UMBER. Image courtesy Cosentino

Finally there is UMBER, the most adventurous and unique color in the series. It is hard to look at this delicately textured terracotta without imagining the rooms one could create with this tone. Unlike the other colors, which are notable for their versatility, UMBER is a showstopper. It is the kind of color you build a room around.

Ukiyo is a truly inspiring series of surfaces. It is also ethically manufactured. Dekton is  the only “Cradle-to-Grave Carbon Neutral surface” as Cosentino offsets 100% of their CO2 emissions over the product’s life cycle. This too is very Zen. Dekton exists in harmony with its surroundings.

To learn more about Dekton Ukiyo and talk with Cosentino about how to integrate it into your next project, visit their website.

Reference

Water House by Water-Filled Glass
CategoriesSustainable News

Dezeen’s top 10 most innovative materials of 2023

As part of our review of 2023, Dezeen’s design and environment editor Jennifer Hahn has rounded up 10 of this year’s most significant material innovations, including bricks made from toxic soil and a 3D printer for wool.

Over the last 12 months, designers found new uses for bacteria, using the microorganisms to colour textiles, grow a leather alternative and turn plastic waste into vanilla ice cream.

In architecture, researchers continued to reinvent concrete, with some using algae instead of cement as a binder while others rediscovered the secret to “self-healing” Roman concrete.

Energy efficiency was an ongoing concern in light of the recent energy crisis, with projects such as water-filled windows and colour-changing cladding aiming to passively heat and cool buildings without relying on fossil fuels.

Read on for Dezeen’s top 10 material innovations of 2023:


Water House by Water-Filled GlassWater House by Water-Filled Glass
Photo courtesy of Water-Filled Glass

Water-Filled Glass by Matyas Gutai, Daniel Schinagl and Abolfazl Ganji Kheybari

One of Dezeen’s best-read stories of the year looked at how researchers from Loughborough University combined two ubiquitous materials – water and glass – in a new and innovative way.

As the name suggests, their Water-Filled Glass windows consist of a thin layer of water wedged between two panes of glass, which can reduce a building’s energy bills by around 25 per cent compared with standard glazing.

That’s because the water absorbs warmth from sunlight and heat loss from the interior that can then be diverted to help heat the building, while also limiting solar heat gain in the warmer months.

Find out more about Water-Filled Glass ›


DNA T-shirt by Vollebak coloured using Colorifix bacterial dyeDNA T-shirt by Vollebak coloured using Colorifix bacterial dye
Photo by Sun Lee

Colorifix by Orr Yarkoni and Jim Ajioka

Synthetic biologists Orr Yarkoni and Jim Ajioka have developed a way of colouring textiles using bacteria in place of toxic chemical dyes which is already being used by mega-retailer H&M and experimental clothing brand Vollebak (pictured above).

Their Colorifix technology uses bacteria that is genetically engineered to produce different colour-making enzymes, creating a dyestuff that is compatible with the textile industry’s standard dye machines.

Crowned material innovation of the year at the 2023 Dezeen Awards, the technology offers a scalable alternative to chemical dyes while using 77 per cent less water and producing 31 per cent fewer carbon dioxide emissions, the company claims.

Find out more about Colorifix ›


Packing Up PFAS by Emy BensdorpPacking Up PFAS by Emy Bensdorp
Photo by Sem Langendijk

Claybens by Emy Bensdorp

At Dutch Design Week, designer Emy Bensdorp presented a series of bricks made using clay contaminated with PFAS – toxic “forever chemicals” used for water- and fire-proofing, that can leak into our soils and waterways.

In the Netherlands, where PFAS can be traced in up to 90 per cent of soils, developers and landowners must now legally take responsibility for this contaminated soil, which ends up being hidden away and left to gather dust in depots with little prospect for the chemicals’ removal.

Bensdorp discovered that firing the clay into bricks at high temperatures can eliminate these highly durable chemicals while turning the soil from a burden into a useful building material via an existing industrial process.

Find out more about Claybens ›


Guilty Flavours ice-cream by Eleonora OrtolaniGuilty Flavours ice-cream by Eleonora Ortolani
Photo by Mael Henaff

Guilty Flavours by Eleonora Ortolani and Joanna Sadler

Central Saint Martins graduate Eleonora Ortolani created a bowl of vanilla ice cream that she believes might the world’s first food made from plastic waste.

The ice cream was made by taking a small amount of PET plastic waste and breaking it down using genetically engineered bacteria to create synthetic vanillin – the flavour molecule in vanilla.

Originally developed by researchers from the University of Edinburgh, the process produces a flavouring that is chemically identical to vanillin derived from crude oil, which is commonly sold in stores. The only difference is that it uses a recycled instead of a virgin fossil feedstock.

Find out more about Guilty Flavours ›


Electrochromic cladding by the University of ChicagoElectrochromic cladding by the University of Chicago
Images courtesy of Hsu Group

Electrochromic cladding by the Hsu Group

Researchers from the University of Chicago have developed a “chameleon-like” facade material that can change its infrared colour – the colour it appears under thermal imaging – based on the outside temperature to keep buildings cool in summer and warm in winter.

The composite material appears yellow under thermal imaging on a hot day because it emits heat and purple on cold days when it retains heat. This colour change is triggered by a small electrical impulse, which either deposits copper onto a thin film or strips it away.

“We’ve essentially figured out a low-energy way to treat a building like a person,” said materials engineer Po-Chun Hsu. “You add a layer when you’re cold and take off a layer when you’re hot.”

Find out more about this electrochromic cladding ›


Model of 3D printed wool chair by Christien MeindertsmaModel of 3D printed wool chair by Christien Meindertsma
Photo courtesy of TFT

Flocks Wobot by Christien Meindertsma

Dutch designer Christien Meindertsma has opened up new uses for the wool of European sheep, which is too coarse to form textiles and thus often discarded, by developing a custom robot arm that acts much like a 3D printer.

The Flocks Wobot connects layers of the material through felting to create three-dimensional shapes without the need for any kind of additional binder.

So far, Meindertsma has used the robot to produce a sofa – currently on display at the V&A – but in the future, she claims it could equally be used to create everything from insulation to acoustic products.

Find out more about Flocks Wobot ›


Local Colours by Loop LoopLocal Colours by Loop Loop
Photo courtesy of Loop Loop

Local Colours by Loop Loop

Dutch design studio Loop Loop has developed the “world’s first plant-based aluminium dying process”, using bio-based pigments instead of ones derived from petroleum.

The Local Colours project adapts the traditional process of anodising, which involves using an electric current to oxidise the metal, creating a porous surface that is able to absorb colour before being dipped into a water-based pigment solution.

So far, the studio has created four different solutions – a deep pink made using madder root, a bright gold produced with red onion and a warm purple and mustard yellow derived from different flowers.

Find out more about Local Colours ›


SOM installation for the 2023 Chicago BiennialSOM installation for the 2023 Chicago Biennial
Photo by Dave Burk

Bio-Blocks by Prometheus Materials and SOM

Colorado start-up Prometheus Materials has developed a “zero-carbon alternative” to concrete masonry blocks that is bound together using micro-algae instead of polluting Portland cement, which accounts for around eight per cent of global emissions.

The company is working with architecture studio SOM to explore applications for the material, with a dedicated installation at this year’s Chicago Architecture Biennial taking the form of a giant spiral.

“This project demonstrates how product development, design, and construction can come together to address the climate crisis in a meaningful way,” said Prometheus Materials president Loren Burnett.

Find out more about Bio-Blocks ›


Bou Bag made from bacterial nanocellulose by Ganni and Modern Synthesis from LDFBou Bag made from bacterial nanocellulose by Ganni and Modern Synthesis from LDF
Photo courtesy of Modern Synthesis

Modern Synthesis by Jen Keane and Ben Reeve

Modern Synthesis has developed a plastic-free leather alternative that drapes much like cowhide but could generate up to 65 times less greenhouse-gas emissions than real leather, the British start-up estimates.

The material is made by bacteria that is grown on a framework of threads and fed with waste sugar from other industries, which is converted into a strong, lightweight material called nanocellulose.

Danish fashion brand Ganni has already used the material to create a version of its Bou Bag (pictured above) that was revealed at the London Design Festival and could be commercially available as soon as 2025.

Find out more about Modern Synthesis ›


MIT Harvard study finds secret to durability of ancient Roman concreteMIT Harvard study finds secret to durability of ancient Roman concrete
Image via Pexels

Roman concrete by MIT and Harvard 

This year, researchers from MIT and Harvard made headlines when they discovered the secret ingredient found in “self-healing” Roman concrete, which they are now aiming to bring to market.

The ancient recipe that has allowed structures such as the Pantheon (pictured above) to remain standing for millennia integrates quicklime instead of the slacked lime found in modern concrete, the scientists have posited.

As rainwater runs through the cracks that form in concrete over time and touches the quicklime clasts in the concrete, this creates a calcium-saturated solution that recrystallises to “heal” the fissures.

Find out more about Roman concrete ›


Dezeen review of 2023Dezeen review of 2023

2023 review

This article is part of Dezeen’s roundup of the biggest and best news and projects in architecture, design, interior design and technology from 2023.

Reference