7 Top Virtual Reality Tools for Architecture
CategoriesArchitecture

7 Top Virtual Reality Tools for Architecture

Architizer’s Tech Directory is a database of tech tools for architects — from the latest generative design and AI to rendering and visualization, 3D modeling, project management and many more. Explore the complete library of categories here.

Virtual reality (VR) technology stands out as a game-changer, offering architects a series of immersive tools that allow them to conceptualize, refine and present their visions with unprecedented clarity and depth. It transcends traditional methods, bridging the gap between imagination and reality like never before. By donning a VR headset, architects can transport themselves and their clients into intricately detailed digital worlds where they can navigate, manipulate and evaluate designs from every angle.

Virtual, Mixed and Extended Reality technology is the second most groundbreaking technological revolution following the AI bloom. It provides a new canvas upon which architects can experiment and discover new processes that turn architecture into a more immersive and socially impactful profession.

Without further ado, here are the top seven Virtual Reality tools that unlock unprecedented capabilities in architectural design.


Best VR Tool for Rendering

Chaos Enscape is a powerful real-time visualization tool that produces fully rendered 3D walkthroughs, acting as a plugin for most CAD and BIM programs. The rendered 3d models can be easily navigated through VR headsets such as Oculus or HTC Vive. Chaos Enscape includes features such as site context, a tool that can add real-world topography and building data to the scene, orthographic views and BIM information for every model component as well as a vast library of assets and materials. By using Enscape’s atmosphere and lighting settings, the renders are produced almost automatically, since architects can experiment with tools such as time of day, clouds, image effects, depth of field and even add fog to the scene.


Best VR Tool for 3d Modeling

Gravity Sketch is a 3D modeling tool that allows architects to design inside a virtual environment. Using gestural actions in a 1:1 scale, architects delve into a new way of creating more responsive designs. This groundbreaking virtual platform becomes an ideal space for collaboration amongst designers, including features such as pre-loaded fabs and reference images to make designs more accurate as well as a number of customizable brushes, textures and colors for effective communication. The 3D models produced are composed of NURBS and meshes, thus being editable in any 3d software and used in an array of mixed reality software.


Best VR Tool for Animation

Twinmotion is one of the most versatile real-time visualization tools. Its most impressive feature is its ability to generate animated immersive VR environments and can be easily integrated with most 3D modeling and BIM software on the market. Architects can work in a real-time environment, updating colors and textures, which are immediately visible on their screen. Twinmotion also includes a library of Smart Assets, for example trees that grow, doors that open and people that move, as well as an array of storytelling tools, through which architects can control the time of day or the season. A distinct feature is the Growth & Phasing tool, which can be used to show in real-time the actual construction process of a project.


Best VR Tool for Cinematic World-building

Unreal Engine can be considered as a more “advanced” version of Twinmotion. Used not only for architecture but also for film, game design and animation, Unreal Engine is a rendering tool that can produce the most cinematic virtual environments. It incorporates worldbuilding features, from modelling and terrain tools to scalable foliage, world partition, countless materials and environment lighting. It also has simulation effects, which include clothing tools, hair and fur and even chaos physics destruction systems. It is an all-in-one software, which can elevate any architectural design into a truly captivating scene, easily accessed through any VR headset.


Best VR Tool for Construction

Unity is a revolutionary tool for not only for architecture but for the wider construction industry. Its real-time visualisation capabilities allow architects to build custom VR experiences in order to design, monitor and even construct what-if scenarios for their projects. Unity includes environmental and operational performance features that measure water, waste and carbon emissions and enhancing predictive maintenance practices. Its Smart Engineering feature aids architects in integrating their designs with instrumentation diagrams that can be easily accessed through VR environments.


Best VR Tool for Beginners

D5 Render is an all-in-one design and render solution that has real-time visualization capabilities. Its easy-to-use interphase allows architects to both modify and render their designs through live-sync viewports. It has an array of environment and material presets as well as library of 11,000+ assets (models and materials) that are used to produce still images, animations and immersive VR walkthroughs. D5 Render’s latest version introduced the AI tool D5 Hi, a spatial concept generator that combines text and image prompts with an existing 3d model to produce a series of rendered images.


Best VR Tool for Collaboration

Studio 3DX is a web-based platform that transforms 3D scenes into stunning virtual environments that can be accessed through a single weblink. It can navigate complex 3d geometries in unmatched speeds and offers a simple set of visualization tools such as viewport setting, atmospheric controls and even audio assets that allow architects to easily create finalized presentations of their designs. Being a web based platform, Studio 3DX is ideal for collaboration, with universal access and VR navigation features making it the perfect platform for online sharing.


How to Better Leverage VR Tools in Architecture

The following tips and considerations will help you maximize the potential of VR in architectural design, as well as avoiding common pitfalls associated with this fast-emerging technology.

Focus on Scale, Proportions and Optimization: Designing within a virtual environment can be somewhat disorienting, especially for beginners. It is important to pay close attention to scale and proportion when designing in VR. Use human-scale references to accurately gauge the size and spatial qualities of architectural elements, helping to create a more realistic sense of immersion. In addition, simplifying geometry, optimising textures and reducing file sizes will help ensure smooth performance and minimise loading times in VR environments.

Provide Clear Navigation: VR environments are sort of like free world games. The user is free to experience them however they please. Consequently, it is vital to construct VR experiences that are easy to navigate and understand, especially for clients and stakeholders who may be less familiar with VR technology. Provide clear instructions and intuitive controls for navigating through virtual environments.

Add a Healthy Dose of Reality: One of the most exciting features of VR technology is the endless possibilities it offers to create structures and environments that do not have to comply to real-world constraints. Although it is crucial to use such technology to keep pushing architecture forward, when designing with construction in mind it is important to consider parameters such as accessibility, environmental sustainability and the overall site conditions of the project.

Architizer’s Tech Directory is a database of tech tools for architects — from the latest generative design and AI to rendering and visualization, 3D modeling, project management and many more. Explore the complete library of categories here.

Reference

Architects’ Guide: How To Integrate Extended Reality (XR) Software Into a Design Workflow
CategoriesArchitecture

Architects’ Guide: How To Integrate Extended Reality (XR) Software Into a Design Workflow

Architizer’s Tech Directory is a database of tech tools for architects — from the latest generative design and AI to rendering and visualization, 3D modeling, project management and many more. Explore the complete library of categories here.

When the 2020 decade began, three pivotal events significantly redefined and remolded the relationship between humans and technology. The Covid-19 pandemic, which normalized concepts such as cross-world, virtual-based collaborations, the resurfacing of the digital platform “Metaverse” following Facebook’s rebranding to Meta in late 2021, and, finally, the rapid growth and popularity of AI technology.

These events carved out the need for reconstructing the digital world in a way that becomes more immersive, more malleable and more interactive with physical reality. This turned the spotlight on technologies such as virtual, augmented, and mixed reality, introducing tools that bridge the gap between the digital and the physical world and consequently breaking ground in the architectural field.

What Exactly is Extended Reality (XR)?

Extended Reality (XR) is a term used to describe immersive technologies. Under the XR umbrella are:

Virtual Reality (VR), which refers to a computer-generated simulation of a three-dimensional environment that can be explored by an individual, typically through the use of specialized electronic devices such as VR headsets. Users are immersed in a digital world that can simulate real or imaginary environments, allowing them to perceive and interact with the surroundings as if they were physically present. VR technology often employs a combination of advanced graphics, audio, and tracking sensors to create a sense of presence and immersion.

Augmented Reality (AR) on the other hand, is a technology that overlays digital information and computer-generated elements onto the real-world environment. Unlike virtual reality, augmented reality integrates digital content seamlessly with the physical world. AR is often experienced through devices such as smartphones, tablets, smart glasses or heads-up displays, allowing users to see both real-world objects and computer-generated elements simultaneously.

Finally, Mixed Reality (MR) is a technology that combines elements of both virtual and augmented reality to create a hybrid environment where physical and digital elements coexist and interact in real-time. In mixed reality experiences, digital objects are not only overlaid onto the real world but are also anchored and responsive to the physical environment. This technology enables users to interact with both real and virtual elements simultaneously, fostering a more seamless integration of the physical and digital realms.

How Can XR Technologies Be Used in Architecture and Design?

“VIRTUAL | REALITY” by Giangtien Nguyen, Afreen Ali, Aziz Alshayeb and Erik H Kusakariba, INVI LLC

From designing immersive virtual environments and prototypes to crafting a 1:1 scale client presentation and even setting up real-time construction simulations, XR technology brings architectural ideas into “reality” in a matter of hours. VR allows architects to visualize and experience their designs at a human scale. This aids in evaluating spatial relationships, testing design concepts, and identifying potential issues before the construction phase. At the same time, clients can experience the same designs through virtual walkthroughs, minimizing any confusion due to the limited understanding of traditional — and often complicated — architectural drawings.

For site planning and analysis, AR can be employed on-site to overlay digital information onto the physical environment. This helps architects and construction teams visualize how a proposed structure will fit into the existing landscape, assess potential challenges, and make informed decisions about site planning. Taking it a step further, site data analytics can be used to assess the environmental impact and energy efficiency of a design. By visualizing and analyzing how sunlight, shadows, and airflow interact with the building, architects are able to strategically produce sustainable and eco-friendly design solutions.

Finally, MR technology opens up a whole new world of techniques in both design and construction. For example, the ability to superimpose guided holograms as marking lines for building complicated geometries or seeing technical installations through walls, unlocks unprecedented possibilities for operating construction sites more efficiently. Furthermore, MR technology offers architects alternative ways of hands-on training in complex — and oftentimes chaotic — construction projects, while minimizing the risks of irreparable errors.

Architizer’s new Tech Directory aggregates tech tools for architects, allowing you to search, compare and review XR-related softwares before selecting which to you in your next project:

Explore Architizer’s Tech Directory

Which XR Softwares Do Architects Use?

In order to craft an Extended Reality experience, architects have to combine specific software with hardware technology. Architectural programs such as Enscape, Twinmotion, SketchUp Viewer and Gravity Sketch have features such as real-time rendering capabilities or augmented reality viewing that allow them to visualize the digital form of their designs. Some of them also act as Virtual Reality Plugins, which can be directly used through a VR headset. In parallel, this technology becomes “physically” accessible through smartphones and tablets as well as VR headsets, AR smart glasses, motion controllers and even gesture recognition devices. Oculus Rift, Microsoft HoloLens, Apple Vision Pro and Leap Motion are only a few examples of such hardware XR devices.

Whether architects use VR headsets to fully immerse in virtual environments, AR smart glasses to blend reality with digital content or motion controllers to physically manipulate both the virtual and material world, XR technology is gradually becoming an integral part of architecture. In its attempt to deal with space in truly imaginative ways, architecture has taken many forms over the years: ink on paper, bricks and mortar and more recently pixels and 3d meshes; Still, XR technology introduces a new, hybrid form of architectural design by merging both physical and digital tools and unlocking new realms of spatial explorations.

Architizer’s Tech Directory is a database of tech tools for architects — from the latest generative design and AI to rendering and visualization, 3D modeling, project management and many more. Explore the complete library of categories here.

Architizer Journal is reader-supported. When you buy through links on our site, we may earn an affiliate commission. Learn more.

Reference

How can mixed reality and AI improve emergency medical care?
CategoriesSustainable News

How can mixed reality and AI improve emergency medical care?

Spotted: Mixed reality (MR) refers to technologies that create immersive computer-generated environments in which parts of the physical and virtual environment are combined. With potential applications that range from education and engineering to entertainment, the market for MR is forecast to record revenues of just under $25 billion by 2032. Now, in a ground-breaking partnership, Singapore-based company Mediwave is teaming up with Sri Lanka’s 1990 Suwa Seriya to deploy MR and artificial intelligence (AI) to create a fully connected ambulance.

1990 Suwa Seriya is Sri Lanka’s national pre-hospital emergency ambulance service, which boasts response times that surpass even some services in developed countries. The innovative ambulance it has deployed uses Mediwave’s integrated Emergency Response Suite, which combines the latest communications equipment with internet-of-things (IoT) and AR capabilities to enhance the efficiency of the emergency response eco-system.

The connected ambulance ensures swift response times and digitises critical processes, while specialised care can be provided remotely through a Microsoft HoloLens. The technology enables Emergency Medical Technicians (EMTs) – staff who man ambulances in Sri Lanka – to connect with physicians at the Emergency Command and Control Centre. These physicians help the EMTs provide care during the so-called ‘golden hour’ of medical emergencies – the concept that rapid clinical investigation and care within 60 minutes of a traumatic injury is essential for a positive patient outcome.

In addition to connecting EMTs with doctors, Mediwave’s system also employs an AI-powered transcriber to digitise Electronic Patient Care Records. This minimises human error and reduces delays once the patient reaches the hospital.

Other applications of extended reality in the Springwise library include holograms that are used to train doctors, virtual environments for treating phobias, and an augmented reality contact lens.

Written By: Matthew Hempstead

Reference

Kustaa Saksi creates vivid tapestries to explore “reality and illusion”
CategoriesInterior Design

Kustaa Saksi creates vivid tapestries to explore “reality and illusion”

Multidisciplinary designer Kustaa Saksi has unveiled In the Borderlands, an exhibition of jacquard textiles at the Helsinki Design Museum, which includes a piece featuring scenery generated by AI software.

Conceived as objects that straddle both art and design, Saksi’s large-scale textiles were hung from the ceilings and arranged across various rooms within a gallery at Helsinki’s Design Museum.

Ideal Fall tapestries
Ideal Fall is a duo of tapestries featuring AI-generated imagery

To create his pieces, the designer uses jacquard weaving – a technique invented in 1804 where patterns are woven with yarn using a loom to create a textile, rather than printed, embroidered or stamped onto fabric.

Ideal Fall is a single oversized tapestry featuring bright and abstract forms depicting waterfall- and plant-style forms.

Large-scale colourful textiles by Kustaa Saksi
Kustaa Saksi also created a series exploring migraines

Saksi created the colourful textile using AI software, which he instructed to generate images that would depict “ideal” scenes of nature. The designer then picked his favourite suggestions and used the imagery as a stimulus for the tapestry’s patterns.

“The exhibition explores moments between reality and illusion, which are the starting point for many of Saksi’s works,” said the Design Museum.

Dramatically lit tapestry at Helsinki Design Museum
The tapestries were suspended from the ceiling at the Design Museum

Migraine Metamorphoses is another series of textiles featuring similarly bold designs, which Saksi created to refer to the various phases of migraines – intense headaches that the designer has suffered since the age of seven.

According to the museum, the soft texture of the textiles intends to “mitigate the painful subject matter”.

Colourful textiles
Monsters and Dreams is a series informed by stories about hallucinations

Often influenced by the boundaries between dreams and imagination, Saksi’s first-ever tapestry series was also on show at the Design Museum.

Called Monsters and Dreams, it is characterised by striking patterns that take cues from hallucinations experienced by one of the designer’s family members. These textiles were draped across or hung from the ceiling of a single room with dark blue walls, which had been painted to enhance the pieces’ dramatic theme.

Saksi has created his pieces in collaboration with Dutch studio TextileLab since 2013.

“The jacquard technique can be referred to as one of the early precursors to the computer,” said the Design Museum.

“It was the first mechanised technique which enabled the transfer of information about a particular pattern to a weaving machine with the help of a punched cylinder, to eventually become a piece of textile.”

In the Borderlands exhibition by Kustaa Saksi
The exhibition is on display in Helsinki until mid-October

Throughout the gallery, the textiles were illuminated with controlled levels of lighting in order to preserve their appearance, according to the museum.

In the Borderlands is on display until 15 October as part of the museum’s 150th-anniversary programme. Elsewhere at Helsinki Design Week, designer Didi NG Wing Yin presented a series of amorphous timber furniture while last year’s edition of the event featured projects including plant-based textiles.

The photography is by Paavo Lehtonen.

Helsinki Design Week takes place from 8 to 17 September 2023 in Helsinki, Finland. See Dezeen Events Guide for an up-to-date list of architecture and design events taking place around the world.

Reference

From Rendering to Reality: Morphosis’ Evolving Practice of Visualization
CategoriesArchitecture

From Rendering to Reality: Morphosis’ Evolving Practice of Visualization

The One Rendering Challenge is now part of the Architizer Vision Awards, honoring the best architectural photography, film, visualizations, drawings, models and the talented creators behind them. Winners are published in print! Start your entry >

Rendering transformed how architecture was visualized and shared. As one of the most common ways that designs are communicated to clients and the public today, these constructed images have become central to practice. Increasingly more realistic as technology has evolved, firms have been exploring diverse ways to understand the impact and potential of renderings. Now more than ever, designers and artists can make visualizations in less time and create new visions of what could be.

For interdisciplinary design practice Morphosis, the firm has made a name for itself by pushing boundaries. In their own words, the designers are “enthusiastically wondering at the future” as they test out new forms and building technologies. Founded in 1972, the firm’s work ranges in scale from residential, institutional, and civic buildings to large urban planning projects.

Like the practice itself and implied in the firm’s name, the renderings produced by Morphosis have shifted and evolved over time. However, a central theme is a blurred entourage and context, creating a sense of movement within an image. The following projects showcase renderings from the firm’s portfolio and photography of their built architecture. As a collection, they show how the practice continues to set the stage for innovation.


Orange County Museum of Art

Costa Mesa, CA, United States

Jury Winner, 2023 A+Awards, Museum

The design of the new Orange County Museum of Art addresses the need for museum space to be both flexible and functional as well as inviting and memorable. With flexible exhibition galleries, dedicated space for educational programming, and areas for public gathering, the new building was made to provide expanded access to the museum’s permanent collection and its world-class special exhibition program. The main floor is dedicated to reconfigurable open-span exhibition space, complemented by mezzanine, black-box, and jewel-box galleries that can accommodate temporary and permanent collection exhibitions spanning scales and mediums.

A spacious roof terrace, equivalent in size to 70 percent of the building’s footprint, serves as an extension of the galleries with open-air spaces that can be configured for installations, a sculpture garden, outdoor film screenings, or events. While the interaction and entrance to this terrace changed over the course of the design, later renderings more closely echo the final project. A sculptural wing hovers over the lobby atrium and creates a prominent location for the educational hall, a dynamic architectural space illuminated by a full-height window overlooking the terrace.


Perot Museum of Nature and Science

Dallas, TX, United States

Giving shape to concrete, Morphosis Architects explored the material’s potential through the Perot Museum of Nature and Science in Dallas. Built to bring a simple cube and plinth into high relief, the Perot Museum showcases a precast-concrete panel façade. As a material investigation integrating structure and formwork, the elegant cladding solution was made possible through computer aided modeling and a collaboration with Gate Precast of Hillsboro, Texas.

The Perot Museum is a showcase of versatility and technical ability. Its design creates a distinct identity for the new institution and enriches the urban environment of the emerging cultural district of Victory Park. The overall massing for the building floats a cube of galleries above a thickened landscape containing classrooms, a theater and support spaces. Breaking the solid geometry of the museum cube, a glass-encased 54-foot (16-meter) continuous flow escalator moves patrons up from the ground floor to a cantilevered platform, which is seen in both renderings of the project and the completed building.


Bloomberg Center

New York, NY, United States

Designed to become a net-zero building, The Bloomberg Center forms the heart of the Cornell Tech campus on Roosevelt Island. The Bloomberg Center was made to reflect the school’s joint goals of creativity and excellence by providing academic spaces that foster collective enterprise and collaboration. The four-story, 160,000-square-foot (14,865-square-meter) academic building is named in honor of Emma and Georgina Bloomberg in recognition of a $100-million gift from Michael Bloomberg, who was responsible for bringing Cornell Tech to New York City while serving as the city’s 108th Mayor. The four-story building is set beneath a photovoltaic canopy with a low and narrow profile framing views across the island.

One of the building’s most distinctive features is its façade, optimized to balance transparency — optimizing daylighting and exterior views — while maximizing insulation and reducing thermal bridging. As the renderings echo the building’s form, they also hint at this texture created along the building facade. Designed as a rain screen system, the outermost layer of the façade is composed of aluminum panels surfaced in an iridescent, PPG polymer coating. Viewed from afar, the aluminum panels register a continuous image that merges the river-view scenery from Cornell Tech’s Roosevelt Island location and Cornell University’s idyllic campus in Ithaca, New York.


Emerson Los Angeles

Los Angeles, CA, United States

Emerson Los Angeles has emerged as a significant landmark in Los Angeles. As a backdrop for student filmmakers, the building weaves an urban fabric of outdoor and indoor spaces together with two slender residential towers bridged by a multi-use platform. With over 180 student rooms, four faculty apartments, film and video production labs, and classrooms, the project combines both a sculptural central mass and an undulating, textured metal scrim. At over 100,000 square feet (9,290 square meters) and ten stories high, the project spurred redevelopment as part of a larger transformation in Hollywood.

As the most distinctive element of the project, the building features a custom metal panel systems manufactured by Zahner. These screens and panels were made to provide shade and privacy, and are composed of seventeen different folded aluminum components. This screen is seen in both renderings of the design, as well as in the heart of the finished building. Zahner used 3D models to produce and fabricate the curvatures. The eight-story sunscreen was made using computational scripting to determine the final geometry that would shade the internal façades.


Kolon One & Only Tower

Gangseo-gu, Seoul, South Korea

Sited in Seoul, Kolon’s new flagship research and development facility brings together researchers, leadership and designers in one location. The building combines flexible laboratory facilities with executive offices and active social spaces that encourage greater interaction and exchange across the company. The four-acre project site sits adjacent to Magok’s central park — a prominent location for what will be the district’s first major completed building. The building folds towards the park, providing passive shading to the lower floors.

Bridging the three extending laboratory wings, the building’s folding volume contains conference rooms and social spaces, augmented by flagship retail and exhibition galleries at the street level to communicate the brand’s vision to the public. A transparent ground plane extends the landscape into the interior, drawing light and movement towards an open pedestrian lane-way and grand entry. The distinctive brise-soleil system on the western façade is both a performative and symbolic feature of the building; the façade units have been parametrically shaped to balance shading and views, and are made from a GFRP formulation that uses one of Kolon’s own high-tech fabrics.


Gates Hall

Ithaca, NY, United States

The Bill & Melinda Gates Hall brings together the faculty and students of Cornell University’s Computer Science and Information Science departments. Housed within a single structure, the project was designed to facilitate collaboration and spontaneous discourse between disciplines. Projecting westward from the building, a two-story cantilever creates a dramatic canopy over the elevated Entry Plaza to establish a new visual gateway to the campus. Advanced digital modeling tools are used to map a double skin of undulating, perforated stainless steel panels, which envelop the reflective glass curtain wall on the second and third levels.

The complex patterning of the façade causes the building to appear to shift throughout the day, evening and seasons, as the sun reflects off this textural surface. The renderings of the project produced for Cornell echo the final design. Performative as well as aesthetic, the metal screen shades the building from the sun, while admitting diffuse daylight and affording exterior views. Accentuated by fritted interior glazing, active social spaces interweave with academic program to extend education beyond traditional classroom settings. Public activity is organized around a dynamic, multi-level atrium on the west side of the building, with an efficient layout of classroom, laboratories and offices to the east.

The One Rendering Challenge is now part of the Architizer Vision Awards, honoring the best architectural photography, film, visualizations, drawings, models and the talented creators behind them. Winners are published in print! Start your entry >

Reference

Isern Serra turns renderings into reality to form pink Moco Concept Store
CategoriesInterior Design

Isern Serra turns renderings into reality to form pink Moco Concept Store

Design studio Isern Serra has transformed a computer-generated image by digital artist Six N Five into a rose-coloured retail space for the Moco Museum in Barcelona.

Situated in Barcelona’s El Born neighbourhood, the Moco Museum exclusively exhibits the work of modern artists such as Damien Hirst, Kaws, Yayoi Kusama and Jeff Koons.

The institution’s eponymous concept store has a similarly contemporary offering, selling a mix of design, fashion and lifestyle goods.

Pink interior of Moco shop in Barcelona, designed by Isern Serra and Six N. Five
The store’s interior is completely covered in pink micro-cement

Its surreal pink interior started out as a computer-generated image by Six N Five, a digital artist known for envisioning other-worldly dreamscapes in pastel hues.

Barcelona-based design studio Isern Serra then brought the image to life, using pink micro-cement to achieve the same uniform, ultra-smooth surfaces seen in the drawing.

Pink interior of Moco shop in Barcelona, designed by Isern Serra and Six N. Five
Products are displayed inside huge circular display niches

“The Moco Concept Store represented an interesting challenge, as I had to combine the purpose of the store with actual architecture remaining true to our original dreamy world I had built in CGI,” explained Six N Five, whose real name is Ezequiel Pini.

“But these concepts were able to go one level further, both in decisions and execution, thanks to Isern Serra who brought its extraordinary talent and experience.”

Pink interior of Moco shop in Barcelona, designed by Isern Serra and Six N. Five
Arched and square niches have also been punctured into the walls

The store’s rosy interior can be seen through two large openings in its facade – one of them is rectangular, while the other is slightly curved and contains the entrance door.

A series of chunky columns run through the middle of the space. Surrounding walls have been punctured with arched, square and circular display niches, some of which are dramatically backlit.

Rows of shelves and a frame for a tv screen have also been made to project from the wall.

Pink interior of Moco shop in Barcelona, designed by Isern Serra and Six N. Five
A faux skylight sits directly above pink display plinths

The store’s largely open floor plan is only interrupted by a few pink cylindrical plinths used to showcase products, and a bespoke pink cashier desk with an integrated computer system.

Custom spotlights have been installed on the ceiling, along with a faux skylight.

Pink interior of Moco shop in Barcelona, designed by Isern Serra and Six N. Five
The store’s custom furnishings, like the cashier desk, are also rendered in pink

An increasing number of creatives are making their virtual designs a reality.

Last year, digital artist Andres Reisinger collaborated with furniture brand Moooi to produce a physical version of his Instagram-famous Hortensia chair, which was initially a rendering.

The piece is covered with 20,000 pink fabric petals, emulating the almost fluffy appearance of a hydrangea flower.

In Sweden, designer Christoffer Jansson passed off a virtual apartment as an Instagram home renovation project.

The photography is by Salva Lopez.


Project credits:

Authors: Six N Five and Isern Serra
Builder: Tegola Rosso SL

Reference

Rendering the Future City: Designing for Extended Reality (XR)
CategoriesArchitecture

Rendering the Future City: Designing for Extended Reality (XR)

The winners of Architizer’s Fourth Annual One Drawing Challenge have been revealed! Interested in next year’s program? Subscribe to our newsletter for updates. 

Architecture has always been a process of visualizing what could be. Over the last twenty years, as we experienced the growth of immersive technologies, new forms of visualization have followed suit. The result is a diverse array of ways to imagine architecture, as well as how we can rethink design. These technologies have created a way to extend the reality that we experience, either through a complete immersion or a blend of virtual and “real” worlds. As we look to the future, design teams are embracing these ideas to establish new ways to live, work and come together.

Today, many types of immersive reality technologies and formats inform what we share, how we visualize, and what we understand. From virtual and augmented reality to mixed and extended, the possibilities have grown exponentially. In the last decade alone, companies have been finding ways to iterate on immersive design to make rapid advances. The following is a guide and explanation of these changes, as well as some ideas on how they may impact how we design and visualize our future.


Virtual Reality (VR)

 

Virtual reality (VR) has had a real impact on architecture because it allows designers to parallel the movement of people in the real world. VR is a 3D, virtual environment where users are fully immersed in a simulated reality. Usually this involves haptic touch technology, as well as a dedicated headset. Depending on the specific format, it can involve more than images, but could also include sounds or respond to user movement. Individuals can usually experience a 360-degree view of an artificial world, and at times, tune in to other senses they would experience in real life.

While the gaming and entertainment industry were early adopters of VR, it has been used across project types in architecture. The Suspension House was created by Kilograph to work with the natural environment around it, rather than fighting against it. To illustrate this relationship, their Virtual Reality experience portrays the house in nature’s many states. The user is taken on a trip through different key locations as the weather time of day changes. They created hand-sketched storyboards and a cinematic trailer rendered in real-time in Unreal Engine.


Augmented Reality (AR)

 

Unlike VR, Augmented Reality (AR) is closer to something realistic. It simulates fabricated or virtual objects in a real environment. Instead of creating a wholly immersive, new reality, it overlays images, animations, or designs onto what you’re seeing. In turn, individuals typically utilize a device like their phone or tablet to overlay these projections in real life. AR has become widely popular, especially by integrating senses like sound. Think Pokémon Go or Instagram filters, these each add a “layer” to what we are experiencing and seeing right before us. And this can be designed.

Both VR and AR can help accelerate the process of architectural visualization. Instead of taking weeks or months to create physical prototypes and models, people can more quickly create an environment or design that they want others to understand and experience. Today, firms are exploring ways they can use AR to solve design problems and make an impact on construction sites.


Mixed Reality (MR)

Mixed Reality (MR) integrates both VR and AR. It blends real and virtual worlds to create complex environments where physical and digital elements interact in real time. Here, both kinds of elements and objects are interacting with one another, and it usually requires more processing power than VR or AR. Mixed reality is gaining traction alongside wearable technology to create immersive environments in a whole new way.

A great example of MR technology is SketchUp Viewer, an app for Microsoft HoloLens, developed by SketchUp developer Trimble. With this app, architects have the means to fully immerse themselves and experience their ideas in 1:1 holographic scale models, jump-starting decision-making from inception all the way through to implementation. ‘Immersion Mode’ is the feature that gives users the abilities to inhabit their holographic models and move freely through them at any development stage.


Extended Reality (XR)

Extended reality, or XR, is widely understood to be an umbrella term for immersive technologies and design. It includes not only augmented, virtual and mixed realities, but also the integration of advancements like Artificial Intelligence (AI) and the Internet of Things (IoT). The result becomes environments that can realistically match what we are able to access in the real world. While a relatively new term, extended reality will transform the development of our cities.

Rendering of Liberland by Zaha Hadid Architects

One example that relies heavily on extended reality is the metaverse. Aiming to be multisensory, the conceptual idea of the metaverse is that it integrates sensory cues of extended reality like auditory, olfactory, haptic, and environmental. Extended reality and the metaverse utilizes OpenXR and WebXR standards. It includes motor control, perception, vision systems, head-eye systems and auditory processing.

All of these technologies are rapidly growing and being applied across entertainment, marketing, real estate, remote working, gaming and leisure, as well as architecture and design. XR can be a valuable tool in education, engaging students who face cognitive challenges or those who respond better to different learning platforms. With XR, brands can also reach new customers as they engage with products and services. As we imagine what the future holds, extended reality will not only shape how we live, but how we design and come together.

The winners of Architizer’s Fourth Annual One Drawing Challenge have been revealed! Interested in next year’s program? Subscribe to our newsletter for updates. 

Reference

The world’s first virtual reality company for social good
CategoriesSustainable News

The world’s first virtual reality company for social good

Spotted: When most people think of virtual reality (VR), they think of entertainment. But Dutch startup Enliven has a different idea. The company is using VR to create a more understanding and empathetic society. Started by Iranian refugee Alex Tavassoli, who arrived in the Netherlands as a young child, the company is developing VR tech that allows users to see and feel the world from the point of view of those experiencing bullying, discrimination, inequality, and sexual harassment. 

Enliven has developed software to run on VR headsets, such as the Oculus Quest. Enliven only sells the software, but does work closely with hardware manufacturers and distributors. The target audience for its platform is companies conducting employee training sessions, but the company has also developed software on the themes of domestic violence and mild mental disability together with the Dutch Ministry of Justice and the Dutch Probabation Service.

According to Enliven, the approach of putting oneself into the virtual shoes of those experiencing crisis has been demonstrated to increase awareness of the emotional and mental impact of destructive behaviour. It claims the experience also improves the chances that users will recognise and adapt their own behaviour.

In addition to providing software, Enliven provides companies with training in how to use it and can also develop bespoke VR to address specific situations. Tavassoli is clear, however, that his biggest motivation is to increase compassion, saying that, “every time someone experiences our content, they are exponentially more likely to act against domestic violence, bullying, or discrimination.”

At Springwise, we have seen VR used in a number of innovative ways, including to test cognitive skills and in the treatment of phobias. This is the first application we have seen that aims to increase empathy and compassion. However, Enliven is keen to point out that the platform is no panacea, saying, “The VR simulation must always be part of a training or course. After the virtual reality experience made its impact, it is up to you as trainer or teacher to turn this into effective (behavioural) change.” 

Written By: Lisa Magloff

Reference