We Are the Rare, Repeat Heat Pump Water Heater Customers
CategoriesSustainable News Zero Energy Homes

We Are the Rare, Repeat Heat Pump Water Heater Customers

The word is now out, and sales of heat pump water heaters (HPWHs) are taking off. New rebates, mandates, and tax credits will likely drive sales through the roof by the end of this decade. Heat pump water heaters use a fraction of the energy of legacy technologies, with great performance, which means lower utility bills along with reduced carbon emissions. We’ve embraced the technology on our journey to electrify two different properties, and we were among the first in the US to buy and install a 120V plug-in heat pump water heater at our family home in Ohio.

Why do we sing their praises?

Cost!

The heat pump water heater is among the most affordable climate-saving technologies available. While solar panels and electric cars are vital tools for climate warriors, a heat pump water heater saves the energy equivalent of seven solar panels while costing only one-sixth the price. They run approximately $1600 for the appliance, plus $1000 to $3000 for installation, depending on the fuel your current water heater uses. This cost is higher than traditional gas or electric-resistance water heaters, but many utilities offer rebates to bring down the price. And then add the 30% tax credit from the Inflation Reduction Act, if the property is your primary residence.

If your current water heater is gas, you may need to run a 240V electrical line, unless you get a new 120V plug-in model (for more info on this option, read about our fourth install below). If your current water heater is electric-resistance, it should already have a 240V line running to it, likely allowing a simple swap.

Efficiency

Hot water accounts for a substantial share of energy use in buildings—17% in single family homes and up to 32% in multi-family—hundreds of dollars a year. Heat pumps move heat rather than create it. So heat pump water heaters are three to five times more efficient than standard water heaters. They look just like a legacy water heater, but a bit taller because the heat pump sits on top of the water tank.

They cost very little to operate: $100 to $150 a year for a family of four, saving $550 compared to an electric resistance water heater and $200 less than a gas water heater. A new heat pump water heater can pay for its higher upfront cost in just a few years. And then it’s saving you money each year after that.

Graphical image depicting carbon savings of heat pump water heater; text reads "A heat pump water heater saves 1 ton of CO2 per year. That's like planting 17 trees"; imagery includes trees and water heater plus logo of Advanced Water Heating Initiative

Source: Advanced Water Heating Initiative.

Carbon

Sure heat pump water heaters are super energy efficient, but they also run on electricity, which means they can use renewable electricity. Replacing a single gas water heater with a heat pump unit will save around 1 ton of CO2 annually.

And the word is out. While heat pump water heaters currently account for only less than 2% of new water heater sales, they jumped 26% in 2022 as sales of natural gas water heaters fell. Heat pump water heaters could increase to half of all water heater sales by 2030.

Propelling electrification

Electricity is the only widely-available, scalable fuel option that is quickly decarbonizing. So reducing climate change involves converting everything to highly efficient, clean electricity. A common critique of the electrification movement is that the electrical grid can’t handle the additional loads to replace fossil fuels used in buildings and transportation. Enter heat pumps. Widespread deployment of heat pumps in HVAC and hot water production will save tremendous energy: enough to power new electrical loads, like electric cars (EVs), on the existing grid.

Graphic showing electricity required for home EV charging can be net-zero due to energy saved by installing heat pump water heater

Heat pump water heaters (HPWH) will likely save nearly all the electricity a household needs to operate an EV.

As Americans transition to EVs over the next decade, heat pump water heaters alone will likely save nearly all the electricity that a household needs to operate an EV. This statistic shows how much energy we currently waste in heating our water. And this EV electrical load is replacing carbon-intensive gasoline and diesel fuels.

About half of the US currently has electric resistance water heaters, so as those homes switch to heat pump water heaters, we won’t have to worry about finding more electricity for EVs. Their utility bills will likely stay constant, saving them all the money they currently spend at the gas pump.

The other half of homes heats water with fossil fuels, so we will need to find added clean electricity for those water heaters and vehicles. (But transitioning electric-resistance space heaters and clothes dryers to heat pump units produces savings similar to switching out water heaters.) Most heat pump water heaters run on 240V (the same as conventional electric water heaters and dryers), but if your old water heater runs on gas, you may have to install a new power line from the panel. But a 120V plug-in model is the newest option. If your current water heater is electric, it will likely be an easy swap: no need for an electrical panel upgrade or service upsize from the utility.

heat pump water heater installed in residential closet surrounded by various tools and clothing items - photo

2017: HPWH replacing an aging water heater

Our old gas water heater was nearing its end of life, and Joe was excited about the technological advance of heat pumps for water heating. Though we still had questions about installation and performance.

It’s easiest to install a heat pump water heater in a basement or garage, because they exhaust cool air. But our heat pump water heater resides in a coat closet in the middle of our living space, venting into the attic. There it draws the warmest air in our house and exhausts to an unconditioned space. (Note that there are lots of options for locating heat pump water heaters in living spaces without ducting.)

Of course there were no local installers familiar with heat pumps back then, but after watching YouTube, Joe felt OK working with a trusted handyman. Even though it was a gas conversion, an existing 240V electrical line made things much easier. Ever since, this unit has consistently provided our family plus an Airbnb with plentiful hot water.

2019: HPWH replacing a functioning gas hot water heater

We did not get the full life out of the existing gas hot water heater in the accessory dwelling unit on our property. We chose to replace a perfectly good appliance (only 7 years old) with a heat pump water heater powered by clean solar energy. Our goal was to eliminate fossil fuels from our home. We used the same attic-ducting technique as the water heater in the main house, locating the unit in a closet. This mighty unit provides plenty of hot water for the tenant and runs the radiant floor heating system as well. (We don’t recommend heat pump water heaters for floor heating, as it is not a proven or scalable application.)

2020: HPWH replacing a decrepit gas water heater

During COVID, we undertook an interiors and sustainability renovation of a duplex in Cleveland, OH, that has been in our family for 75 years. In transitioning to all-electric, we replaced an almost 30-year-old basement water heater with our favorite heat pump. In addition to reducing our energy bill by $200 a year, it provides great dehumidification: about 2–4 quarts of water per day. If you currently run one or more dehumidifiers in your damp, Midwestern basement, you may save hundreds more.

The plumber added a new 240V power line, and ran the condensate tube to the floor drain. The basement maintains about 60 °F all winter, and we’ve never needed to engage the less-efficient backup electric-resistance heating elements.

Plumber works to install 120 V heat pump water heater - photo

2023: The new 120V heat pump water heater

This past summer, we replaced the other 30-year-old gas water heater in the basement of the Cleveland duplex. This just-arrived-on-the-market 120V unit eliminated the need to run 240V power from the panel. As heat pump enthusiasts, we were excited to test the latest tech. Perhaps the most difficult step was placing the custom order with Home Depot. Though now it’s readily available!

The installation was the easiest part. It took the plumber (who had never heard of a heat pump water heater) only 2.5 hours to complete the job, about the same as a standard gas water heater. The 120V heat pump water heater plugs right into a standard outlet. But he did have to run the condensate tube into the floor drain nearby and cap the gas line.

The 120V unit has been humming along for months—it’s very quiet—using a mere 65 kWh in the first month of operation. We monitor its performance through the manufacturer’s app, so we know it remains ridiculously efficient and almost always completely full of hot water. At a total of $3,258 installed and estimated savings of $208 a year. The 120V  models usually eliminate the backup electric-resistance heating elements by using a larger tank with more hot water stored, or by storing water at higher temperatures and then mixing in cold water to avoid scalding. Our 120V unit uses the latter strategy; see it in action.

If this were our primary residence, we might have taken advantage of the 30% tax credits for heat pump water heaters, lowering our cost to $2,281. That comes so close to the $2,000 average installed cost of a standard gas or electric water heater. And you’re still saving hundreds of dollars a year on energy costs. This proves that almost any of the 60 million US homes with a gas water heaters can easily and cheaply move towards a cleaner, decarbonized home that is less expensive to operate.

We’re big fans of making a long-term decarbonization plan, so you’re not rushing to replace broken equipment and being forced to install new circuit breakers or even a new panel or expensive electrical service upgrade. So before checking the cost of a heat pump water heater, understand your home’s installation requirements and identify a contractor or two. Then when the time, and rebates and tax credits, are right, you’re ready to switch. Because they save so much on utility bills, proactively replacing a functioning, but inefficient, water heater with a heat pump water heater may make sense—for the sake of our changing climate.

Decarbonize your life logo

This article springs from several posts by Naomi Cole and Joe Wachunas, first published in CleanTechnica. Their Decarbonize Your Life series shares their experience, lessons learned, and recommendations for how to reduce household emissions.

The authors:

Joe Wachunas and Naomi Cole both work professionally to address climate change—Naomi in urban sustainability and energy efficiency and Joe in the electrification of buildings and transportation. A passion for debarbonization, and their commitment to walk the walk, has led them to ductless heat pumps, heat pump water heaters, induction cooking, solar in multiple forms, hang-drying laundry (including cloth diapers), no cars to electric cars and charging without a garage or driveway, a reforestation grant from the US Department of Agriculture, and more. They live in Portland, OR, with two young children.

 

Reference

We Are the Rare, Repeat Solar Customers
CategoriesSustainable News Zero Energy Homes

We Are the Rare, Repeat Solar Customers

Our solar story is a long one, and our most recent installers joked that they don’t usually have repeat customers. We love solar so much that we’ve installed it three times over the past decade and saved thousands on energy bills. If you’ve always thought it was out of reach for you, consider that the cost of panels has fallen from around $8 per watt in 2010 to $2 to $3 per watt today. This is still too expensive for many, but with declining costs, extension of the 30% solar tax credit, and accessible financing, solar is more affordable than ever.

2010

Our first install was on a townhouse that Naomi owned. When Joe moved in, he was so excited about solar that he immediately dumped his life savings into twelve 230 W panels (today’s panels are typically over 400 watts) for the roof. We’re not sure this was the smartest move on his part, as we weren’t married yet, and he had nothing left in the bank. But he justified it as a sign of his commitment to the environment and the relationship.

The total system cost was $20,010. Joe paid $14,490, and the installer received an Energy Trust of Oregon incentive for the remaining amount. Because these were early days, we also received the 30% federal tax credit and $6,000 in state tax credits (that don’t exist anymore), which covered an incredible 75% of the total cost over a period of years. Back then, with more generous subsidies but lower performance, the investment took over 10 years to pay back. With today’s improved performance and lower costs, EnergySage finds that, on average, solar panels pay back in 8.7 years.

Image of solar panels on rooftops of main home and ADU - photo

7.2 kW solar system on our family home in North Portland.

2012

Two years later, we moved and weren’t in a position to put that much cash down, but our new home had a south facing roof that was perfect for solar. At that time, solar leases were all the rage, and that option ended up being the right choice for us. Through Sunrun (currently the largest solar installer in the US), we put down $6,000 (all of which we received back in state tax credits over 4 years) for 13 solar panels estimated to produce 3,257 kWh per year. We have the option to buy the panels from SunRun at the end of the 20-year lease.

Because we don’t need all the electricity our panels produce when the sun is shining, and we don’t have batteries to store it, about a third of the energy powers our all-electric home and the rest goes back to the grid and provides a credit on our utility bill.

 2016

Four years later, we built an addition, which gave us more roof space and room for more solar. We entered into another Sunrun lease, with an estimated 4,054 kWh of annual electricity because the panel efficiency increased that much in those 4 years.

Our now-combined 7.2 kW solar system provides about 60% of our energy needs, and that’s for an all-electric property with regular EV charging and six to seven people living on site. (We are a family of four and have a long-term tenant in an accessory dwelling unit as well as an addition that’s typically occupied by an exchange student or Airbnb guests.)

Combined savings

For at least half the year, our utility bill is only about $12, which is the cost of being connected to the grid. We get credit for our excess summer production, and our bill only exceeds the $12 connection charge for several months in late winter and early spring.

All of our efficiency and electrification efforts, combined with our solar panels, mean we spend a mere $850 per year on energy. That’s one-fifth the national household average and a staggering one-tenth the per capita average! Our solar panels saved us a whopping $7,300 in the 11 years since we installed the first set on this house.

We also subscribe to community solar for the approximately 40% of our energy needs that aren’t met by our rooftop panels, helping us achieve our carbon-free home and transportation.

Are You Ready?

In addition to the 8% of US homeowners who have solar, a recent survey found that 39% have seriously considered solar. If this includes you, you’ll need to first determine your roof viability, which depends on 1. the orientation of your roof (south- and west-facing work best) and 2. the  age of your roof (best practice says fewer than 10 years old so it can age with your panels). If your roof is older than 10 years, you can replace it at the same time you install solar. Many contractors offer both services. The Department of Energy presents a number of online resources to understand your roof’s solar potential.

If your roof is a good candidate, you’ll then need to determine how to pay for the panels. Given the average cost of rooftop solar is currently about $20,000 after tax credits, it’s not feasible for most folks to pay with cash. But there are diverse funding options:

  • Outright ownership: If you can swing it with cash, solar is a great investment with a reasonable payback period. This is the route we went for our first house. A home equity line of credit or cash-out refinance could also provide the funds.
  • Solar loan: Many solar companies now offer financing that requires little to no money down and potentially low interest rates with monthly payments that are offset by lower utility bills. You own the panels outright, receive the tax credits, and are responsible for maintenance.
  • Solar lease: If your state offers solar leases, sometimes called Power Purchase Agreements, a solar company could install, operate, and manage panels on your roof and take the tax credits. You commit to paying that company for the power produced by the panels. This is how we got the 28 panels on our current home.
  • Bulk purchasing and Solarize: It’s also worth checking if your area has a bulk purchasing program like Solarize, through which you could get a discounted install if a bunch of neighbors are also going solar. The nonprofit Solar United Neighbors organizes solar co-op programs for households to benefit from discounted pricing with bulk purchases.

Thanks to the Inflation Reduction Act, residential solar systems are eligible for a 30% tax credit through 2032. Your state may also offer additional rebates and incentives.

Cartoon image (evoking WWII) of soldier promoting solar panels. Text reads: Your tomorrow in in your hand today! Buy Victory Panels

Solar panels could be the victory bonds of the war on climate change. Image by Joe Wachunas.

To explore options, reach out to solar companies in your region. We recommend getting three bids in order to compare costs and proposed system design. A basic Google search will turn up lots of local contractors, so pay attention to reviews, and check if your state has recommended solar contractors like Energy Trust of Oregon’s Trade Ally network.

In addition to the decarbonization and financial benefits of solar, we love that our panels give us the independence of being our own energy producer. We’re more insulated from fluctuating energy costs and get the satisfaction of knowing that most of our energy is produced on our own property.

Plus, rooftop solar is fighting the climate crisis. What’s not to love?

 

Decarbonize your life logo

This article springs from a post by Naomi Cole and Joe Wachunas, first published in CleanTechnica. Their Decarbonize Your Life,” series shares their experience, lessons learned, and recommendations for how to reduce household emissions.

The authors:

Joe Wachunas and Naomi Cole both work professionally to address climate change—Naomi in urban sustainability and energy efficiency and Joe in the electrification of buildings and transportation. A passion for debarbonization, and their commitment to walk the walk, has led them to ductless heat pumps, heat pump water heaters, induction cooking, solar in multiple forms, hang-drying laundry (including cloth diapers), no cars to electric cars and charging without a garage or driveway, a reforestation grant from the US Department of Agriculture, and more. They live in Portland, OR, with two young children.

 

Reference