Simplified hydroponics systems – Springwise
CategoriesSustainable News

Simplified hydroponics systems – Springwise

Spotted: The Global Report on Food Crises (GRFC) 2023 estimates that over a quarter of a billion people were acutely food-insecure in 2022, something UN Secretary-General António Guterres calls “a stinging indictment of humanity’s failure to make progress towards Sustainable Development Goal 2 to end hunger, and achieve food security and improved nutrition for all.” Ugandan agtech company Hydroponics Gardens Masaka is working to reduce the number of people experiencing food insecurity by providing supported hydroponic growing programmes.  

Designed specifically for smallholder farmers and entrepreneurs – especially women – the hydroponic gardens grow feed for animals and vegetables for the community. The company provides training on the hardware and software required to run a hydroponic farm, along with growing and harvesting techniques. And to help accelerate the profitability of the garden, the startup supplies growers with direct-to-consumer business models and plans.  

Because the gardens don’t require soil, and use much less water than traditional gardens, the systems can be installed in a range of smaller spaces. Young growth barley grows large enough in just five to eight days to be fed to livestock, and the hydroponic gardens can be installed either vertically or horizontally, depending on what best suits the homeowner’s space. Cabbage, kale, spinach, and other greens are crops Hydroponics Gardens Masaka recommends for home-growing.  

Owners can choose varied levels of automation for the systems, and waste is minimal, which is partially why hydroponic farming is a more sustainable means of growing food. So far, from the over 500 growing systems Hydroponics Gardens Masaka has installed for home use, more than 100 tonnes of food have been generated.  

As the need for locally grown food continues to increase, innovators are creating a range of solutions. In the archive, Springwise has spotted examples such as the use of food waste for hydroponic nutrients and an app-led connected grow pod for home use.

Written By: Keely Khoury

Reference

Double Stud Wall Simplified – Low Cost, High Performance
CategoriesSustainable News Zero Energy Homes

Double Stud Wall Simplified – Low Cost, High Performance

Simplify

The double-stud wall is a well-established method for creating a very economical, durable, and high R-value assembly in new construction – and is one reason it’s included as one of the basic 475 Smart Enclosure System assembly types. We know pushing standard code-minimum construction toward high performance is complicated. So we’re always looking for ways to simplify – to simultaneously reduce cost while optimizing efficiency and occupant comfort. Integrated with Pro Clima air sealing and moisture control components, the double-stud wall provides unmatched economic value, safety from moisture damage, and long-lasting performance.

Go Sheathingless

With Pro Clima component integration, we’re taking it one step further. Below we illustrate a sheathingless double-stud wall (that’s right: no structural sheathing) that provides the following characteristics:

  • Minimized material costs
  • Maximized moisture drying potential
  • Removal of formaldehyde, VOC’s and other toxic chemicals commonly found in SPF, rigid foams, OSB, and plywood
  • Easily adjustable wall thickness to meet your design R-value
  • Space between walls for continuous insulation
  • Utilization of dense-pack insulation (Gutex wood THERMOFIBER, cellulose, fiberglass, mineral wool, or Havelock Wool).
  • No special materials or connections needed for the framing components
  • Fits with the typical platform framing method

You can still frame your walls on the deck and raise them into place,  but without all that sheathing they’ll be a lot lighter. With this system, you build a house out of 2x4s, fibrous insulation, SOLITEX MENTO Plus weather-resistive barrier outboard, INTELLO Plus smart vapor retarder inboard, and not much else.

The Framing

The wall consists of an inner load-bearing wall and an outer exterior finishing wall. The floor and roof loads are stacked on top of the inner wall studs. This method can allow the use 24″ o.c. advanced framing assembly if your floor and roof loads meet the design criteria. The inner wall is framed like any other stick-built wall, with the exception that the shear load is carried by 2x lumber nailed, or metal strapping mechanically fastened, diagonally, to the outside face of the inner stud wall – in the insulation cavity.

It’s important to note that each structure will have very different shear and uplift retention requirements due to variables in building height, the number of windows, local codes, shape of building, seismic requirements, etc. The outer wall is connected to the decks as outriggers, there to support the insulation and finished facade elements, and consequently, it requires minimal framing material and opening headers. In taller walls, it’s important to connect the inner and outer studs for additional strength as well as partition the bays every second bay – to make dense-packing of the double stud cavities easier to reach proper density and maintain quality control.

The Integrated Service Cavity

With this approach, the inner wall studs act as the service cavity without the need for additional strapping to support the interior finish – making it an integrated service cavity. This approach takes planning but allows for fewer steps and less material. An excellent example of this approach is demonstrated in our Project Spotlight: Vermont Integrated Architecture. Leicester, VT.

Two Air Barriers Too

To optimize the insulating value of the dense-pack insulation – airtight membranes are placed on both sides of the fibrous insulation, thereby preventing thermal bypass, as well as optimizing the drying reserves of this highly insulated wall. At the interior side is the INTELLO PLUS membrane, airtight with intelligent vapor control, making it vapor open in the summer to facilitate inward drying and vapor retarding in the winter to prevent vapor accumulation into the insulation. The INTELLO Plus is reinforced so that it substitutes for the typical mesh used in a dense-pack installation. At the exterior side is SOLITEX MENTO PLUS: airtight, waterproof, reinforced and vapor open, allowing for maximum drying potential to the outside without being restricted by an exterior sheathing, like plywood or OSB, which are Class II or low Class III vapor retarders.

Windows & Penetrations

The window is installed into a plywood box that ties together the inner and outer walls. We offer a wide selection of window air sealing tapes, but to keep it simple you need only TESCON PROFIL, or the even faster TESCON PROFECT, for the airtight connections at the interior and exterior of the window. (And don’t forget to pre-make your window corners!). At the sill heavy-duty self-sealing waterproofing is provided by EXTOSEAL ENCORS. There are multiple ways to create a thermal bridge free window installation – there are many variables depending on the window type and brand.

The most important thing is to make sure that the window is precisely connected to your interior and exterior airtight and moisture control layers. This will ensure that your installation will not have condensation due to air movement at this thermally weak intersection. Small air leakage at this connection will allow the interior winter humidity to enter the insulated cavity. Making an air-tight connection at all openings is the best way to prevent future structural damage.

Learn More

For more details and variations on this concept, download  475’s free CAD details and ebook for 475 Smart Enclosure Double-Stud Assemblies.

By 475 Building Supply

This guest blog was originally published on the 475 Building Supply blog.

Reference

The Double Stud Wall Simplified – Low Cost, High Performance
CategoriesSustainable News Zero Energy Homes

The Double Stud Wall Simplified – Low Cost, High Performance

Simplify

The double-stud wall is a well-established method for creating a very economical, durable, and high R-value assembly in new construction – and is one reason it’s included as one of the basic 475 Smart Enclosure System assembly types. We know pushing standard code-minimum construction toward high performance is complicated. So we’re always looking for ways to simplify – to simultaneously reduce cost while optimizing efficiency and occupant comfort. Integrated with Pro Clima air sealing and moisture control components, the double-stud wall provides unmatched economic value, safety from moisture damage, and long-lasting performance.

Go Sheathingless

With Pro Clima component integration, we’re taking it one step further. Below we illustrate a sheathingless double-stud wall (that’s right: no structural sheathing) that provides the following characteristics:

  • Minimized material costs
  • Maximized moisture drying potential
  • Removal of formaldehyde, VOC’s and other toxic chemicals commonly found in SPF, rigid foams, OSB, and plywood
  • Easily adjustable wall thickness to meet your design R-value
  • Space between walls for continuous insulation
  • Utilization of dense-pack insulation (Gutex wood THERMOFIBER, cellulose, fiberglass, mineral wool, or Havelock Wool).
  • No special materials or connections needed for the framing components
  • Fits with the typical platform framing method

You can still frame your walls on the deck and raise them into place,  but without all that sheathing they’ll be a lot lighter. With this system, you build a house out of 2x4s, fibrous insulation, SOLITEX MENTO Plus weather-resistive barrier outboard, INTELLO Plus smart vapor retarder inboard, and not much else.

The Framing

The wall consists of an inner load-bearing wall and an outer exterior finishing wall. The floor and roof loads are stacked on top of the inner wall studs. This method can allow the use 24″ o.c. advanced framing assembly if your floor and roof loads meet the design criteria. The inner wall is framed like any other stick-built wall, with the exception that the shear load is carried by 2x lumber nailed, or metal strapping mechanically fastened, diagonally, to the outside face of the inner stud wall – in the insulation cavity.

It’s important to note that each structure will have very different shear and uplift retention requirements due to variables in building height, the number of windows, local codes, shape of building, seismic requirements, etc. The outer wall is connected to the decks as outriggers, there to support the insulation and finished facade elements, and consequently, it requires minimal framing material and opening headers. In taller walls, it’s important to connect the inner and outer studs for additional strength as well as partition the bays every second bay – to make dense-packing of the double stud cavities easier to reach proper density and maintain quality control.

The Integrated Service Cavity

With this approach, the inner wall studs act as the service cavity without the need for additional strapping to support the interior finish – making it an integrated service cavity. This approach takes planning but allows for fewer steps and less material. An excellent example of this approach is demonstrated in our Project Spotlight: Vermont Integrated Architecture. Leicester, VT.

Two Air Barriers Too

To optimize the insulating value of the dense-pack insulation – airtight membranes are placed on both sides of the fibrous insulation, thereby preventing thermal bypass, as well as optimizing the drying reserves of this highly insulated wall. At the interior side is the INTELLO PLUS membrane, airtight with intelligent vapor control, making it vapor open in the summer to facilitate inward drying and vapor retarding in the winter to prevent vapor accumulation into the insulation. The INTELLO Plus is reinforced so that it substitutes for the typical mesh used in a dense-pack installation. At the exterior side is SOLITEX MENTO PLUS: airtight, waterproof, reinforced and vapor open, allowing for maximum drying potential to the outside without being restricted by an exterior sheathing, like plywood or OSB, which are Class II or low Class III vapor retarders.

Windows & Penetrations

The window is installed into a plywood box that ties together the inner and outer walls. We offer a wide selection of window air sealing tapes, but to keep it simple you need only TESCON PROFIL, or the even faster TESCON PROFECT, for the airtight connections at the interior and exterior of the window. (And don’t forget to pre-make your window corners!). At the sill heavy-duty self-sealing waterproofing is provided by EXTOSEAL ENCORS. There are multiple ways to create a thermal bridge free window installation – there are many variables depending on the window type and brand.

The most important thing is to make sure that the window is precisely connected to your interior and exterior airtight and moisture control layers. This will ensure that your installation will not have condensation due to air movement at this thermally weak intersection. Small air leakage at this connection will allow the interior winter humidity to enter the insulated cavity. Making an air-tight connection at all openings is the best way to prevent future structural damage.

Learn More

For more details and variations on this concept, download  475’s free CAD details and ebook for 475 Smart Enclosure Double-Stud Assemblies.

By 475 Building Supply

This guest blog was originally published on the 475 Building Supply blog.

Reference